
Operationg Systems

Examination task

05 September 2019

Reserved cells

Ex. 1
Ex. 2
Ex. 3
Ex. 4
Ex. 5
Ex. 6
Tot.

ID number Surname Name

Professor: © Scanzio

It is not possible to consult texts, notes or to use calculators. The only material allowed consists in
the forms distributed by the professor. Solve the exercises in the reserved spaces. Additional sheets
are permitted only when strictly necessary. Report the main steps for solving exercises.
Duration: 100 minutes.

1. Specify the meaning of Process Control Block and of Context Switching.

Represent and describe the state diagram of a process. Also indicate the meaning of “orphan process” and “zombie
process”.

Finally, reports two precedence graphs that make use of the system calls fork and wait, one must be realizable,
the other not realizable.

2. Suppose to execute the following program

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>
void *t1 (void *p){
pthread_t thread;
int *pn = (int *) p;
int n = *pn;
if (n>0) {
printf ("thread: %d\n", n--);
pthread_create (&thread, NULL, t1, &n);

}
pthread_join (thread, NULL);
pthread_exit (NULL);

}
int main (int argc, char *argv[]) {
pthread_t thread;
int n = atoi (argv[1]);
setbuf (stdout, 0);
printf ("main 1: %d\n", n);
if (fork()) {
printf ("main 2: %d\n", -n);
pthread_create (&thread, NULL, t1, &n);
pthread_join (thread, NULL);

} else {
system ("echo main 3: n\n");
execlp ("echo", "bash", "main 4:", "n", NULL);

}
return 1;

}

with only one integer parameter equal to 3.

Report the control flow graph (CFG) and the process generation tree after its execution. Also indicate what it
produces on video and for what reason.

3. Illustrate the Readers and Writers problem. Report its solution using semaphore primitives in the case of precedence
to Readers (illustrate the meaning of each semaphore). What do “precedenza ai Readers” mean?

Starting from the solution of the previous problem, realize the synchronization scheme represented by the following
precedence graph.

...R R R R

W

The number of Readers is unknown

Cyclically, the execution of one Writer is followed by the execution of an indefinite number of Readers. At the
beginning, it is necessary to run a Writer. At the end of the Writer, it is needed to execute one or more Readers.
However, when the last Reader exits the critical section, before another Reader enters, it is necessary that a new
Writer is executed.

4. A textual file with name virus.dat, stores a list of PID on subsequent lines.

Realize a BASH script that verifies which of the processes listed in the file virus.dat are running in the system.
For each of these processes in execution, the script has to visualize the name of the owner, and the list of the PID
of all its children processes.

Remember that the command ps -ef provides an output similar to the following:

UID PID PPID C STIME TTY TIME CMD
root 1 0 0 giu14 ? 00:00:08 /sbin/init splash
syslog 630 1 0 giu14 ? 00:00:00 /usr/sbin/rsyslogd -n
avahi 665 643 0 giu14 ? 00:00:00 avahi-daemon: chroot helper
quer 938 1 0 giu14 ? 00:00:01 /lib/systemd/systemd --user
quer 946 938 0 giu14 ? 00:00:00 (sd-pam)
...

#!/bin/bash

###
Exercise 4 - Exam
05/09/2019 #
Launch with: ./es4.sh
virus.dat #
###

Check arguments
if [$# -ne 1]; then
 echo "Usage: es4.sh <filename>"
 exit 1
fi

Read input file
while read pid; do

 # Check if process is running
 res=$(ps -ef | tr -s " " | cut -d " " -f 1,2 | grep -e " pid")
 if [$? -eq 0]; then

 # Get process name
 name=$(echo $res | cut -d " " -f 1)

 # Find PIDs of children
 children=$(ps -ef | tr -s " " | cut -d " " -f 2,3 | grep -e " pid" | cut
-d " " -f 1 | tr '\n' ' ')

 # Print output
 echo "$pid [$name]: $children"
 fi
done < $1

5. Write a multi-thread program able to read and write a matrix of integer numbers as described in the following.

The matrix, statically defined with R rows and C columns, has to be firstly read from standard input and then write
on standard output. Both operations have to be performed on a specific order, from row number 0 to row number
R-1, from column 0 to column C-1.

The operations of read and write must be performed by the program using a single function thread that reads, and
using a single function thread that writes, both executed R times. At the beginning, the program executes the R
threads that read, which synchronize to read the matrix in the indicated order (the first thread reads the first row
and the others wait, then the second thread reads the second row and the other wait, etc.). Each thread reads the
whole line. After reading, the program executes the R threads that write, which synchronize with each other and
write the matrix in the indicated order. Each thread writes the whole row. The program then ends.

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <semaphore.h>
#include <stdlib.h>
#include <unistd.h>

#define R 4
#define C 4

/
**
 SOLUTION: separate semaphores.
***/

// Global variables
int mat[R][C];
pthread_t tids[R];
sem_t semaphores[R-1];

// Function to read a single row of the matrix from stdin
void* read_row(void *arg) {

 // Get row index
 int i = (intptr_t) arg;

 // Wait for the threads reading preceeding rows
 if(i > 0) {
 sem_wait(&(semaphores[i-1]));
 }

 // Print prompt message
 fprintf(stdout, "Inserting values for row %d\n", i);

 // Read row from stdin
 for(int j=0; j<C; ++j) {
 fscanf(stdin, "%d", &(mat[i][j]));
 }

 // Signal reading of the current row completed to the next thread
 if(i<R-1) {
 sem_post(&(semaphores[i]));
 }

 return NULL;
}

// Function to write a single row of the matrix to stdout
void* write_row(void *arg) {

 // Get row index
 int i = (intptr_t) arg;

 // Wait for the threads writing preceeding rows
 if(i > 0) {
 sem_wait(&(semaphores[i-1]));
 }

 // Write row to stdout
 for(int j=0; j<C; ++j) {
 fprintf(stdout, "%d ", mat[i][j]);
 }

 // Print new line
 fprintf(stdout, "\n");

 // Signal writing of the current row completed to the next thread
 if(i<R-1) {
 sem_post(&(semaphores[i]));

 }

 return NULL;
}

int main(int argc, char **argv) {

 // Prepare semaphores
 for(int i=0; i<R-1; ++i) {
 sem_init(&(semaphores[i]), 0, 0);
 }

 // Launch reading threads
 for(int i=0; i<R; ++i) {
 pthread_create(&(tids[i]), NULL, read_row, (void *) (intptr_t) i);
 }

 // Wait termination of reading threads
 for(int i=0; i<R; ++i) {
 pthread_join(tids[i], NULL);
 }

 fprintf(stderr, "\n");

 // Launch writing threads
 for(int i=0; i<R; ++i) {
 pthread_create(&(tids[i]), NULL, write_row, (void *) (intptr_t) i);
 }

 // Wait termination of writing threads
 for(int i=0; i<R; ++i) {
 pthread_join(tids[i], NULL);
 }
 return 0;
}

6. In reference to the indexed allocation in UNIX/LINUX, indicate the meaning of the following terms (possibly using
appropriate graphic aids): directory block, directory entry, data block and i-node.

Specify the meaning of “permissions” (or rights), “owner” and “group” of a file or a directory in the UNIX system.

How can you modify the “permissions”, the “owner” and the “group” of a file or a directory?

Clarify the meaning of soft-link and hard-link, reporting the commands to create them.

Let s1 be a soft-link to the file s, h1 a hard-link to the file h, and d a directory.

In this circumstance, indicate what happens to the objects and to the links following the 6 following operations,
which are (not) executed in sequence, but all performed starting from the initial state previously indicated): cp
s1 s2, cp h1 h2, rm s, rm h, mkdir d/d1, mkdir d/d2.

