
Operationg Systems

Examination task

27 January 2020

Reserved cells

Ex. 1
Ex. 2
Ex. 3
Ex. 4
Ex. 5
Ex. 6
Tot.

ID number Surname Name

Professor: © Scanzio

It is not possible to consult texts, notes or to use calculators. The only material allowed consists in
the forms distributed by the professor. Solve the exercises in the reserved spaces. Additional sheets
are permitted only when strictly necessary. Report the main steps for solving exercises.
Duration: 100 minutes.

1. Suppose to execute the following program

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>
void *t1 (void *p){
int *n = (int *) p;
printf ("--- thread: id=%d\n", *n);
pthread_exit (NULL);

}
int main () {
pthread_t thread;
int i, n, v[2];
char str[100];
setbuf (stdout, 0);
for (i=0; i<2; i++)
if (fork()>0) {
v[i] = 0;

} else {
v[i] = 1;

}
n = v[0] + v[1]*2;
pthread_create (&thread, NULL, t1, &n);
pthread_join (thread, NULL);
sprintf (str, "echo ’- echo: n=%d’", n);
system (str);
sprintf (str, "-- exec: n=%d", n);
execlp ("echo", "bash", str, NULL);
return 1;

}

Report the control flow graph (CFG) and the process generation tree after its execution. Indicate what it produces
on video and for what reason.

3. Illustrate the “Producer and Consumer” problem (with P producers and C consumers), and report with pseudo-code
a possible implementation schema. Indicate and motivate the function of all the semaphores.

Then, adapt the previous solution to the case of exactly 3 producers and only one consumer. Each producer must
generate elements in a queue dedicated to each process, the consumer must consume elements ensuring a higher
priority to the queue with the major number of stored elements.

Suggestion: use counters to track the number of elements in each queue, or alternatively use a function (e.g., sem
getvalue) that can return the value of a semaphore.

4. Implement a BASH script that receives the path of a directory from command line. The script, after checking the
passage of the correct number of parameters, it must select, in the sub-tree of directors with the specified directory
as root, all the regular files with dimension less than 10MB, whose name starts with the string “expense” followed
by an unsigned integer number and with extension .xyz (e.g., expense1.xyz, expense200.xyz).

Assume that each of these files contains a text with a format similar to the following:

expense1.xyz

Product Quantity Unit_price
pasta 2 5
pizza 1 8
pasta 1 6

expense200.xyz

Product Quantity Unit_price
pizza 2 2
fruit 3 5

where the first line is a header, while the following contain the name of a product, its quantity, and its unit price
(separated by single spaces).

For each selected file, the script must generate a file with the same name but with extension .dat, without header,
that contains for each product the total, obtained by summing the quantities multiplied by the unit price of all the
lines in which that product appears.

For the example files shown above, the generated files must be the following:

expense1.dat

pasta 16
pizza 8

expense200.dat

pizza 4
fruit 15

#!/bin/bash

###
Exercise 4 - Exam 2020/01/27
Run with: ./es4.sh <folder>
###

Control of arguments
if [$# -ne 1]; then
 echo "Usage: es4.sh <folder>"
 exit 1
fi

Select the files, and save the list of paths into a temporary file
find $1 -type f -size -10M -regex '.*\/spesa[0-9]+\.xyz$' > /tmp/$$

Scan the paths of selected files
while read filename; do

 # Declaration of an associative array to store the expenses
 declare -A sums

 # Scan the content of the file, skipping the first line
 isfirst=0
 while read product quantity price; do
 if [$isfirst -ne 0]; then
 let sums[$product]+=quantity*price
 fi
 isfirst=1
 done < $filename

 # Generate the output file
 name=$(basename $filename ".xyz")
 outfile="$name.dat"

 # Print the expenses in the output file
 for product in "${!sums[@]}"; do
 echo $product ${sums[$product]}
 done > $outfile

 # Delete the associative vector
 unset sums

done < /tmp/$$

Delete temporary file
rm -f /tmp/$$

exit 0

#!/bin/bash

###
Exercise 4 - Exam 2020/01/27
Run with: ./es4.sh <folder>
###

Control of arguments
if [$# -ne 1]; then
 echo "Usage: es4.sh <folder>"
 exit 1
fi

Select the files, and save the list of paths into a temporary file
find $1 -type f -size -10M -regex '.*\/spesa[0-9]+\.xyz$' > /tmp/$$

Scan the paths of selected files
while read filename; do

 # Remove the header, and order lines by product in the second temporary file
 cat $filename | tail -n +2 | tr -s " " | sort -t " " -k 1 > "/tmp/$$_2"

 # Generate the output file
 name=$(basename $filename ".xyz")
 outfile="$name.dat"

 # Scan the content of the file, adding and printing the expenses for the
product
 current=""
 tot=0
 while read product quantity price; do
 if ["$current" == ""]; then
 current=$product
 tot=0
 elif ["$product" != "$current"]; then
 echo $current $tot >> $outfile
 current=$product
 tot=0
 fi
 let tot+=quantity*price
 done < "/tmp/$$_2"
 echo $current $tot >> $outfile

 # Delete second temporary file
 rm -f "/tmp/$$_2"

done < /tmp/$$

Delete temporary file
rm -f /tmp/$$

exit 0

#!/bin/bash

###
Exercise 4 - Exam 2020/01/27
Run with: ./es4.sh <folder>
###

Control of arguments
if [$# -ne 1]; then
 echo "Usage: es4.sh <folder>"
 exit 1
fi

Select the files, and save the list of paths into a temporary file
find $1 -type f -size -10M -regex '.*\/spesa[0-9]+\.xyz$' > /tmp/$$

Scan the paths of selected files
while read filename; do

 # Read the product file
 for product in $(cat $filename | tail -n +2 | cut -d " " -f 1 | sort | uniq);
do

 # Extract the entries in the file for the current product in a second
temporary file
 cat $filename | tail -n +2 | grep $product | cut -d " " -f 2,3 > "/tmp/$
$_2"
 expense=0

 # Sum the expenses for the current product
 while read quantity price; do
 let expense+=quantity*price
 done < "tmp.txt"

 # Generate the output file
 name=$(basename $filename ".xyz")
 outfile="$name.dat"

 # Print on the output file
 echo "$product $expense" >> $outfile

 # Delete second temporary file
 rm "/tmp/$$_2"
 done

done < /tmp/$$

Delete the temporary file
rm -f /tmp/$$

exit 0

5. A function receives as parameters a vector of integers (vet) and its dimension (n), which is supposed to be equal
to a power of 2:

int array_sum (int *vet, int n);

The function must return the sum of the elements of the vector. The sum has to be computed using a concurrent
version of the following algorithm, which is illustrated in the figure for a vector with dimension n = 16:

int i, k;
k = n/2;
while (k != 0) {

for (i=0; i<k; i++) {
vet[i] += vet[i+k];

}
k=k/2;

}

1 3 −2 4 7 11 −8 2 1 16 4−5 −52 2 1

2 8 9 −6 3

4

34

19 15

8 11 11

−2 14 6

In particular, the function must apply the steps of the previous algorithm, ensuring that all sum operations are
executed (in parallel) by n/2 separate threads. Each thread is associated with one of the first n/2 cells of the vector.
Each thread takes care of executing all the sums whose result must be stored in the cell of the vector associated
with it. Note that the number of sums each thread will have to execute depends on the position of the cells of the
vector associated with it. Manage synchronization between threads with semaphores, so that all sums are made
respecting precedences.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>
#include <semaphore.h>

typedef struct {
 int *vet;
 sem_t *sem;
 int n;
 int id;
} args_t;

void * adder(void * arg) {

 // Get argurments
 sem_t *sem = ((args_t *) arg)->sem;
 int *vet = ((args_t *) arg)->vet;
 int id = ((args_t *) arg)->id;
 int n = ((args_t *) arg)->n;

 // Perform addition synchronizing with the other threads
 int k=n/2;
 while(k != 0) {
 if(k < n/2)
 sem_wait(&sem[id + k]);
 vet[id] += vet[id + k];
 k=k/2;
 if(id >= k) {
 sem_post(&sem[id]);
 break;
 }
 }

 // Terminate thread
 pthread_exit(0);
}

int array_sum(int *vet, int n) {
 int k=n/2;
 pthread_t *tids;
 args_t *args;
 sem_t *sem;

 // Allocate thread id array
 tids = (pthread_t *) malloc(k*sizeof(pthread_t));

 // Initialize semaphores
 sem = (sem_t *) malloc(k*sizeof(sem_t));
 for(int i=0; i<k; ++i) {
 sem_init(&sem[i], 0, 0);
 }

 // Allocate array of args
 args = (args_t *) malloc(k*sizeof(args_t));
 for(int i=0; i<k; ++i) {
 args[i].id = i;
 args[i].vet = vet;
 args[i].n = n;
 args[i].sem = sem;
 }

 // Start threads
 for(int i=0; i<k; ++i) {
 pthread_create(&tids[i], NULL, adder, &args[i]);
 }

 // Wait for sum to be complete
 pthread_join(tids[0], NULL);

 // Destroy semaphores
 for(int i=0; i<k; ++i) {
 sem_destroy(&sem[i]);
 }

 // Free memory
 free(tids);
 free(sem);
 free(args);

 // Return sum
 return vet[0];
}

int main(int argc, char **argv) {
 int res = 0;
 for(int i=0; i<10000; i++) {
 if(i%1000==0) printf("%d\n", i);
 int vet[16] = {1, 3, -2, 4, 7, 11, -8, 2, 1, -5, 16, 4, 2, -5, 2, 1};
 int newres = array_sum(vet, 16);
 if(i == 0) res = newres;
 else if(res != newres) printf("Discrepancy %d %d\n", res, newres);
 }
 printf("Result: %d\n", res);
}

