Reserved cells

Ex. 1
Ex.

Operationg Systems Fx.

O O x| W N

Examination task Ex.
27 January 2020

ID number Surname Name

Professor: (O Scanzio

It is not possible to consult texts, notes or to use calculators. The only material allowed consists in
the forms distributed by the professor. Solve the exercises in the reserved spaces. Additional sheets
are permitted only when strictly necessary. Report the main steps for solving exercises.

Duration: 100 minutes.

1. Suppose to execute the following program

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>

void *tl (woid *p) {
int *n = (int *) p;
printf ("--- thread: id=%d\n", =n);
pthread_exit (NULL);

int main ()
pthread_t thread;
int i, n, v[2];
char str[100];
setbuf (stdout, 0);
for (i=0; i<2; i++)
if (fork()>0) {

v[i] = 0;
} else {
v[ii] = 1;

n = v[0] + v[1]*2;

pthread create (&thread, NULL, tl1, &n);
pthread_join (thread, NULL);

sprintf (str, "echo ’'- echo: n=%d’", n);
system (str);

sprintf (str, "-— exec: n=%d", n);
execlp ("echo", "bash", str, NULL);
return 1;

}

Report the control flow graph (CFG) and the process generation tree after its execution. Indicate what it produces
on video and for what reason.

F X A

= 7
CoNTROL FloW

, (V:):OKJ’O ol

0 A a0)
m=f Mz (h=A m=3
hread ¢ /,LHWL,C /f'ﬁmas\ L /M hagasl - €
(_fhptad: 6" Oor T Tl N 4d=3"

e e
(_¢ina m=0" - o ™ C adher: <3
1 1 ((
oxec L exee 2oec. 0 AEEC
(__pxec: 0 (pec o2 ot azn® (__ec:n=3"
PROLESS OGENERATION PosSIBLE OUTPUT
TREE -
| w—~ TPhacod - 24,0
s H\/TQPGL /00\,:?-
—_— WL D pal=
—— - PKas\ - A=
—"Q(/LTQ'I [V\:O
— etha~ n=A
_ @J/\Q/Z{V\';(L
i : 2
(Tah frocus exe - et =>
e Lo gl
a ~ Xer: M=’
=t Q)@CM:‘L
e s 3

(Roall bt dpenda om The
pIWS o

2. Describe the syntax of the system calls wait and exit, and an example on how to transfer with exit and wait
an integer value from a terminated child to the parent. What happens if a parent does not call wait and a child
terminates? Which mechanism is used by the kernel to identify the termination of a process?

Two child processés, Py (with PID 123) and P, (with PID 456), which are the only children of a parent, terminates.
Indicate for the following two codes the output provided by the function printf in the case P; terminates before
P,, and P, terminates before P; (4 cases in total).

Code 1: Code 2

while (wait () I=123); waitpid (123, (int %) 0, 0);
© pid = wait (); pid = wait();
printf ("$d\n", pid); printf ("$d\n", pid);

S t M(M*MW) e\)(m{zgéxgokx&(/fmcw
—ﬁ//(/ltf;it %b(ﬂ/wb AW)/QM /lm@cm

batus))
A&(W@ﬁ \grchEX T STRTUS [.- sbotus));

5
k()

L doer mat G Vad aud e Al (/l/w@@@(
WM&,W&W %ometa ?
ko, A o WW SIGCHLO

tede ¢

3. Hlustrate the “Producer and Consumer” problem (with P producers and C' consumers), and report with pseudo-code
a possible implementation schema. Indicate and motivate the function of all the semaphores.

Then, adapt the previous solution to the case of exactly 3 producers and only one consumer. Each producer must
generate elements in a queue dedicated to each process, the consumer must consume elements ensuring a higher
priority to the queue with the major number of stored elements.

Suggestion: use counters to track the number of elements in each queue, or alternatively use a function (e.g., sem
getvalue) that can return the value of a semaphore.

=%, 3

P RoDUCERS [CONSUMERS
ik (full0); sk (owpty Si2€): it (me € 4); Mk (W,P/U/
e 1) S
Mo (8.0 vk (1)3

" praya (B ok el

wack(omeP)) wact (‘V"”Z/(C)M \

k), : (rvvu?d/‘ !
W(mp) W(W%

M(wm,@/wwwm sizE), =047
R, P, Py (Phel) = P
ke (4 |
TIRON 7 o oot X
\Xw&(wbj[/{/]) y N L= - [:Z]))
ongore (Grene U 0ol = (nax_ad (0 ma,m);
ol (o lh T3, ok (Joll (),
\ WCM[M /8ADQ)/'
W(@vﬁzﬁmj);
WW()

WITH CoUnNTERS

ikl 91, il om0, im0, 41
W (/L:f'wgw /m\x) (mw

.80 : i),
Wack (owipy [4])° o %K»

) AN / W(W‘A [/G);
W(W(E’UD/ 3 et waik (m(Z]))
gmgmeme(@reme (1), / (¥] = (!nax _ X | 0}
[,Q’W&(’/L E/I/]G{{q—/ / W@G / CQENCfQ%%‘E Jj
W”R(Wt’ﬂ)) gm(mo- <3, A+r)
/WWQ(M)? ig(@ Sﬂm)W(mm)j

\ W(Wwe[m},%aﬁ);
CQ’I/WL/W[(V‘:S"‘;/
frigmaX (om Ton));

4. Implement a BASH script that receives the path of a directory from command line. The script, after checking the
passage of the correct number of parameters, it must select, in the sub-tree of directors with the specified directory
as root, all the regular files with dimension less than 10MB, whose name starts with the string “expense” followed
by an unsigned integer number and with extension .xyz (e.g., expensel.xyz, expense200.xyz).

Assume that each of these files contains a text with a format similar to the following:

expensel.xyz expense200.xyz

Product Quantity Unit_price Product Quantity Unit_price
pasta 2 5 pizza 2 2

pizza 1 8 fruit 3 5

pasta 1 6

where the first line is a header, while the following contain the name of a product, its quantity, and its unit price
(separated by single spaces).

For each selected file, the script must generate a file with the same name but with extension .dat, without header,
that contains for each product the total, obtained by summing the quantities multiplied by the unit price of all the
lines in which that product appears.

For the example files shown above, the generated files must be the following:

expensel.dat expense200.dat
pasta 16 pizza 4
pizza 8 fruit 15

#!/bin/bash

B e
Exercise 4 - Exam 2020/01/27

#

Run with: ./es4.sh <folder>

#
#

HRHRHHHHHH AR R R R R R R AR AR

Control of arguments
if [$# -ne 1 1; then

fi

Select the files, and save the list of paths into a temporary file
find $1 -type f -size -10M -regex '.*\/spesal[0-9]+\.xyz$' > /tmp/$$

echo "Usage: es4.sh <folder>"
exit 1

Scan the paths of selected files
while read filename; do

Declaration of an associative array to store the expenses

declare -A sums

Scan the content of the file, skipping the first line

isfirst=0
while read product quantity price; do
if [$isfirst -ne 0]1; then
let sums[$product]+=quantity*price
fi
isfirst=1
done < $filename

Generate the output file
name=$(basename $filename
outfile="$name.dat"

.xyz")

Print the expenses in the output file
for product in "${!sums[@]}"; do

echo $product ${sums[$product]}
done > $outfile

Delete the associative vector
unset sums

done < /tmp/$$

Delete temporary file

rm

-f /tmp/$$

exit 0

#!/bin/bash

B e
Exercise 4 - Exam 2020/01/27
Run with: ./es4.sh <folder>
B e G

Control of arguments

if [$# -ne 1 1; then
echo "Usage: es4.sh <folder>"
exit 1

fi

Select the files, and save the list of paths into a temporary file
find $1 -type f -size -10M -regex '.*\/spesal[0-9]+\.xyz$' > /tmp/$$

Scan the paths of selected files
while read filename; do

Remove the header, and order lines by product in the second temporary file
cat $filename | tail -n +2 | tr -s " " | sort -t " " -k 1 > "/tmp/$$ 2"

Generate the output file
name=$(basename $filename ".xyz")
outfile="$name.dat"

Scan the content of the file, adding and printing the expenses for the

product
current=""
tot=0
while read product quantity price; do
if ["$current" == ""]1; then
current=$product
tot=0
elif ["$product" != "$current"]; then
echo $current $tot >> $outfile
current=$product
tot=0
fi

let tot+=quantity*price
done < "/tmp/$$_2"
echo $current $tot >> $outfile

Delete second temporary file
rm -f "/tmp/$$ 2"

done < /tmp/$$

Delete temporary file
rm -f /tmp/$$

exit 0

#!/bin/bash

B e
Exercise 4 - Exam 2020/01/27
Run with: ./es4.sh <folder>
B e G

Control of arguments

if [$# -ne 1 1; then
echo "Usage: es4.sh <folder>"
exit 1

fi

Select the files, and save the list of paths into a temporary file
find $1 -type f -size -10M -regex '.*\/spesal[0-9]+\.xyz$' > /tmp/$$

Scan the paths of selected files
while read filename; do

Read the product file
for product in $(cat $filename | tail -n +2 | cut -d " " -f 1 | sort | uniq);
do

Extract the entries in the file for the current product in a second
temporary file

cat $filename | tail -n +2 | grep $product | cut -d " " -f 2,3 > "/tmp/$
$72 n

expense=0

Sum the expenses for the current product
while read quantity price; do

let expense+=quantity*price
done < "tmp.txt"

Generate the output file
name=$(basename $filename
outfile="$name.dat"

.xyz")
Print on the output file
echo "$product $expense" >> $outfile
Delete second temporary file
rm "/tmp/$$ 2"
done

done < /tmp/$$

Delete the temporary file
rm -f /tmp/$$

exit 0

5. A function receives as parameters a vector of integers (vet) and its dimension (n), which is supposed to be equal
to a power of 2:

int array_sum (int =*vet, int n);

The function must return the sum of the elements of the vector. The sum has to be computed using a concurrent
version of the following algorithm, which is illustrated in the figure for a vector with dimension n = 16:

[1]3]2f4]7][u][-g2]1]-5[16]4]2 5] 2]1]

int i, k;
k = n/2;
while (k != 0) {
for (i=0; 1i<k; i++) {
vet[1i] += vet[i+k];

[2-2l4lslolelsls] | [[[[][]

Lofafsfof [[T T TTTTTTT]

} ofis] [T [T T T TTTTTT]
k=k/2; v
} B [T T TTTTTTIITT]

In particular, the function must apply the steps of the previous algorithm, ensuring that all sum operations are
executed (in parallel) by n/2 separate threads. Each thread is associated with one of the first n/2 cells of the vector.
Each thread takes care of executing all the sums whose result must be stored in the cell of the vector associated
with it. Note that the number of sums each thread will have to execute depends on the position of the cells of the
vector associated with it. Manage synchronization between threads with semaphores, so that all sums are made
respecting precedences.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>
#include <semaphore.h>

typedef struct {
int *vet;
sem_t *sem;
int n;
int id;

} args_t;

void * adder(void * arg) {

// Get argurments

sem t *sem = ((args_t *) arg)->sem;
int *vet = ((args_t *) arg)->vet;
int id = ((args_t *) arg)->id;

int n = ((args_t *) arg)->n;

// Perform addition synchronizing with the other threads
int k=n/2;
while(k !'= 0) {
if(k < n/2)
sem wait(&sem[id + Kk]);
vet[id] += vet[id + k];
k=k/2;
if(id >= k) {
sem _post(&sem[id]);
break;

}

// Terminate thread
pthread exit(0);

int array_sum(int *vet, int n) {
int k=n/2;
pthread t *tids;
args_t *args;
sem_t *sem;

// Allocate thread id array
tids = (pthread t *) malloc(k*sizeof(pthread t));

// Initialize semaphores
sem = (sem_t *) malloc(k*sizeof(sem t));
for(int i1=0; i<k; ++1i) {
sem init(&sem[i], 0, 0);
}

// Allocate array of args
args = (args_t *) malloc(k*sizeof(args t));
for(int i1=0; i<k; ++i) {

args[i].id = i;

args[i].vet = vet;
args[il.n = n;
args[i].sem = sem;

}

// Start threads
for(int i1=0; i<k; ++i) {

pthread create(&tids[i], NULL, adder, &args[i]);
}

// Wait for sum to be complete
pthread join(tids[0], NULL);

// Destroy semaphores
for(int i=0; i<k; ++i) {

sem_destroy(&sem[i]);
}

// Free memory
free(tids);
free(sem);
free(args);

// Return sum
return vet[0];

}

int main(int argc, char **argv) {

int res = 0;

for(int i=0; 1<10000; i++) {
if(i%1000==0) printf("%d\n", 1i);
int vet[16] = {1, 3, -2, 4, 7, 11, -8, 2, 1, -5, 16, 4, 2, -5, 2, 1};
int newres = array_sum(vet, 16);
if(i == 0) res = newres;
else if(res != newres) printf("Discrepancy %d %d\n", res, newres);

printf("Result: %d\n", res);

6. Clarify the main differences between an ASCII (or text)

and a binary file. What advantages and disadvantages do
the latter offer?

[Nlustrate the main differences between the functions fopen and open, between fprintf and write, and between

fscanf and read.

Explain the differ s between the linked a: d ndezed alloc tnswh aving files, llust;tgth' advantages

and disadvantages F ‘the indexed allocation in the UNIX/LINUX mnt yuh also to indicate what is

the meaning of the terms d1 ybl[llﬁ dtc €l bl k)
lex’c gm@//w ‘(@\}m,—mm a/mL \\ @ol&ol /vw HSLM (amal other COO(A%%A)

%WW‘M&/ *raﬁéawj/maﬂmm

\9@%\9\, ~frnfpset Zel/vfm/

gz’w‘% gor?"'“/ Zw@m@) L Dosix ome ANSIC Dubuny Wch)m,

tom, alls. The amer ane Am(olmin
T gmm,, e b\)%@.z/&/a/vmk sl
@\Wm@%@m A M/@W - gorons

