
Operationg Systems

Examination task

12 February 2020

Reserved cells

Ex. 1
Ex. 2
Ex. 3
Ex. 4
Ex. 5
Ex. 6
Tot.

ID number Surname Name

Professor: © Scanzio

It is not possible to consult texts, notes or to use calculators. The only material allowed consists in
the forms distributed by the professor. Solve the exercises in the reserved spaces. Additional sheets
are permitted only when strictly necessary. Report the main steps for solving exercises.
Duration: 100 minutes.

1. Suppose that the hard disk of a small embedded system is composed if 32 blocks of 1 MByte each, which are
numbered from 0 to 31. Suppose that the operating system keeps track of the free (occupied) blocks indicating
them in a vector with the value 0 (1), and that the current situation of the disk is represented by the following
vector:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 1 0 0 0 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 1 0 0 1 1 1 0 1 0 1 1

With reference to the file allocation methodologies contiguous, linked, FAT and indexed, indicate how the files
File1, File2 and File3 (with dimension 4.4, 3.6 and 5.9 Mbyte, respectively) can be allocated.

Schematically report the information stored in the directory entry, and where that information is stored.

2. Two processes (P1 and P2) must access in mutual exclusion to a critical section called CS. Solve this problem with
the testAndSet procedure, and then with the use of semaphores and the init, wait and signal primitives. In
addition, describe the main differences (advantages and disadvantages) of the two previous solutions.

Finally, illustrate the implementations (in pseudo-code) of the three previous functions (testAndSet, wait and
signal).

3. A concurrent program is composed of 8 processes (P1, P2,...,P8), whose temporal relationship is illustrated by the
following figure:

P
1

P
6

P
2

P
3

P
4

P
5

P
7

P
8

In the case of not cyclic processes, report the program that implements the previous precedence graph by using
only the fork, wait and exit system calls. In this case, do not consider the dotted arc.

In the case of cyclic processes (i.e., function with body while(1)), report the body of processes P1, P2,...,P8

using the primitives init, signal, wait and destroy. Report the initialization of the semaphores, and use the
minimum number of semaphores. In this case, consider the dashed arch.

4. Implement a BASH script capable to realize the “trash” functionality using the command line. The script manages
the directory TRASH (which is assumed to exist and it is located in the home of the user). In this directory, the
script stores all the files deleted by the user, and a hidden file .TRASH INDEX, containing, for each deleted file, an
entry with the following information:

filename absdir

The script must be able to perform three types of operations:

• --delete abspath: deletion of the file with absolute path abspath. The script must check that the file to
be deleted exists and is not duplicated in the TRASH directory, then it moves that file in TRASH, and it stores its
name (filename) and the absolute path of the source directory (absdir) in the .TRASH INDEX file.

• --restore filename: restores the file with name filename. Use the content of the file .TRASH INDEX to
check for the presence of filename, and obtain the path of the original directory. Check the existence of this
directory and move the file into it, then delete the entry related to the restored file from .TRASH INDEX.

• --restore-all: restores all the deleted files. This option performs the previous operation for all the files
registered in .TRASH INDEX, finally delete the contents of .TRASH INDEX.

Note that each invocation of the script must allow the execution of a single operation among the three described.
In the case of problems during the deletion or restoration of a single file, the user must be warned with an error
message, and the operation is not performed. Check for the correct number of parameters.

Example (assuming that trash is the name of the script):

> ./trash --delete /dir1/pippo -> ("pippo" moved in TRASH, row "pippo /dir1/"
added in .TRASH_INDEX)

> ./trash --delete /dir3/pippo -> ERROR (filename "pippo" contained in .TRASH_INDEX)
> ./trash --restore pippo -> ("pippo" moved in "/dir1/", row "pippo /dir1/"

removed from .TRASH_INDEX)

Suggestion: remember that the grep command with the -v option deletes all the lines that do not match the
search criterion.

File: /home/scanzio/0-cloud/2-corsi…i/20192020/20200212/sol/ex4.sh Page 1 of 2

#!/bin/bash

##
Exercise 4 - Exam 12/02/2020
Launch as: ./ex4.sh --delete <abspath>
./ex4.sh --restore <filename>
./ex4.sh --restore-all
##

TRASH_DIR="~"
TRASH_INDEX=".TRASH_INDEX"

Manage delete operation
if [$1 == "--delete"] && [$# -gt 1]; then

 # Split file name and path
 FILE_NAME=$(basename "$2")
 FILE_PATH=$(dirname "$2")

 # Check file existence
 if [! -f "$FILE_PATH/$FILE_NAME"]; then
 echo "File not found"
 exit 1
 fi

 # Check if a file with the same name is already in the trash folder
 if [-f "$TRASH_DIR/$FILE_NAME"]; then
 echo "A file with name $FILE_NAME is already in the trash"
 exit 1
 fi

 # Move the file into the trash folder
 mv "$FILE_PATH/$FILE_NAME" "$TRASH_DIR/"

 # Log new delete file entry into the trash index
 echo "$FILE_NAME $FILE_PATH" >> "$TRASH_DIR/$TRASH_INDEX"

Manage restore operation
elif [$1 == "--restore"] && [$# -gt 1]; then

 # Set file name to restore
 FILE_NAME=$2

 # Retrieve file path
 FILE_PATH=$(grep -e "^$FILE_NAME" "$TRASH_DIR/$TRASH_INDEX" | cut -d " " -f 2)

 # Check if file name was found in trash index
 if ["$FILE_PATH" == ""]; then
 echo "File with name $FILE_NAME not in the trash"
 exit 1
 fi

 # Check source folder existence
 if [! -d "$FILE_PATH/"]; then
 echo "Source folder $FILE_PATH not found"
 exit 1
 fi

 # Restore file
 mv "$TRASH_DIR/$FILE_NAME" "$FILE_PATH/"

 # Delete index entry
 grep -v -e "^$FILE_NAME" "$TRASH_DIR/$TRASH_INDEX" >> "$TRASH_DIR/
~$TRASH_INDEX"
 mv "$TRASH_DIR/~$TRASH_INDEX" "$TRASH_DIR/$TRASH_INDEX"

File: /home/scanzio/0-cloud/2-corsi…i/20192020/20200212/sol/ex4.sh Page 2 of 2

Manage restore all operation
elif [$1 == "--restore-all"]; then

 # Scan all lines in the trash index
 while read FILE_NAME FILE_PATH; do

 # Check source folder existence
 if [! -d "$FILE_PATH/"]; then
 echo "Source folder $FILE_PATH not found"
 continue
 fi

 # Restore file
 mv "$TRASH_DIR/$FILE_NAME" "$FILE_PATH/"

 done < "$TRASH_DIR/$TRASH_INDEX"

 # Clear trash index content
 echo -n "" > "$TRASH_DIR/$TRASH_INDEX"

Manage wrong parameters
else
 echo "Usage: es4.sh < --delete | --restore | --restore-all > [arg]"
 exit 1
fi

exit 0

5. In digital image processing, the smoothing of an image consists in the application of a filter function whose purpose
is to highlight significant patterns. Write the function:

void smoothing (int **mat, int r, int c);

which, after receiving as parameters the matrix of integers mat with r rows and c columns, performs the smoothing
on all values, according to the following simplified algorithm.

Each value of the matrix must be replaced with the arithmetic mean of the adjacent elements (regardless of the
number of adjacent elements). The function must perform the following steps:

• Define a temporary support matrix of the same size of the original source matrix (mat).

• Execute a number of threads equal to (R · C + 1).

– The first set of (R · C) threads is executed immediately. Each of these threads manages a specific element of
the matrix, and it is responsible for calculating the average value of the elements adjacent to it, and to store
this average value in the support matrix in the corresponding position.

– The last thread is executed only when all the previous (R ·C) threads have terminated. It takes care of copying
the temporary matrix in the original one. When this operation is finished, the smoothing function ends.

File: /home/scanzio/0-cloud/2-corsi…mi/20192020/20200212/sol/es5.c Page 1 of 3

/*
 Exam 2020/02/12 Ex. 5
 */

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>
#include <semaphore.h>

#define R 4
#define C 5

void smoothing (int **mat, int r, int c);

// For average
typedef struct {
 int **source_mat;
 int r, c; // Dimension of the source matrix
 int i, j; // Position of the element to analyze
 int *dest; // Destination element
 sem_t *sync_sem; // To synchronize the end of average computation with the start
of the copy
} args_t;

// For copy
typedef struct {
 int **source_mat;
 int r, c; // Dimension of the source matrix
 int **dest_mat; // Destination element
 sem_t *sync_sem; // To synchronize the end of average computation with the start
of the copy
} args_copy_t;

void *average(void *arg) {

 // Get arguments
 int **mat = ((args_t *) arg)->source_mat;
 int r = ((args_t *) arg)->r;
 int c = ((args_t *) arg)->c;
 int i = ((args_t *) arg)->i;
 int j = ((args_t *) arg)->j;
 int *dest = ((args_t *) arg)->dest;
 sem_t *sem = ((args_t *) arg)->sync_sem;
 int n_elem = 0;

 // Compute average of adjacent elements
 *dest = 0;
 for (int x=-1; x<=1; x++)
 for (int y=-1; y<=1; y++)
 if ((x!=0 || y!=0) && i+x>=0 && i+x<r && j+y>=0 && j+y<c) {
 *dest += mat[i+x][j+y];
 n_elem++;
 }
 *dest /=n_elem;

 /* IMP NOTE: instead of using this semaphore, solutions based on pthread_join
are also acceptable */
 sem_post(sem);

 pthread_exit(0);
}

File: /home/scanzio/0-cloud/2-corsi…mi/20192020/20200212/sol/es5.c Page 2 of 3

void *copy(void *arg) {
 // Get arguments
 int **source_mat = ((args_copy_t *) arg)->source_mat;
 int r = ((args_copy_t *) arg)->r;
 int c = ((args_copy_t *) arg)->c;
 int **dest_mat = ((args_copy_t *) arg)->dest_mat;
 sem_t *sem = ((args_copy_t *) arg)->sync_sem;

 // Wait the finish of all the average threads
 for (int i=0; i<r*c; i++)
 sem_wait(sem);

 // Copy into the destination matrix
 for (int i=0; i<r; i++)
 for (int j=0; j<c; j++)
 dest_mat[i][j] = source_mat[i][j];

 pthread_exit(0);
}

void smoothing (int **mat, int r, int c) {
 pthread_t *tids;
 args_t *args;
 args_copy_t args_copy;
 sem_t sem;

 // Allocate temporary matrix
 int **tmp_mat;
 tmp_mat = (int**)malloc(r*sizeof(int*));
 for (int i=0; i<r; i++)
 tmp_mat[i] = (int*)malloc(c*sizeof(int));

 // Allocate thread id array
 tids = (pthread_t *) malloc((r*c+1)*sizeof(pthread_t));

 // Synchronization semaphore initialization
 sem_init(&sem, 0, 0);

 // Allocate array of args
 args = (args_t *) malloc(r*c*sizeof(args_t));

 // Args for average
 for(int i=0; i<r; i++) {
 for(int j=0; j<c; j++) {
 args[i*c+j].source_mat=mat;
 args[i*c+j].r = r;
 args[i*c+j].c = c;
 args[i*c+j].i = i;
 args[i*c+j].j = j;
 args[i*c+j].dest = &tmp_mat[i][j];
 args[i*c+j].sync_sem = &sem;
 }
 }

 // Args for copy
 args_copy.source_mat = tmp_mat;
 args_copy.r = r;
 args_copy.c = c;
 args_copy.dest_mat = mat;
 args_copy.sync_sem = &sem;

 // Start r*c threads that computes the average of adjacent element
 for(int i=0; i<r*c; i++) {
 pthread_create(&tids[i], NULL, average, &args[i]);

File: /home/scanzio/0-cloud/2-corsi…mi/20192020/20200212/sol/es5.c Page 3 of 3

 }
 // Start copy thread
 pthread_create(&tids[r*c], NULL, copy, &args_copy);

 // Wait that the copy is completed
 pthread_join(tids[r*c], NULL);

 // Free memory
 free(tids);
 for (int i=0; i<r; i++)
 free(tmp_mat[i]);
 free(tmp_mat);
}

int main(int argc, char **argv) {
 int **mat;
 int n=0;

 mat = (int**)malloc(R*sizeof(int*));
 for (int i=0; i<R; i++)
 mat[i] = (int*)malloc(C*sizeof(int));

 for(int i=0; i<R; i++)
 for(int j=0; j<C; j++)
 mat[i][j] = n++;

 printf("BEFORE smoothing\n");
 for(int i=0; i<R; i++) {
 for(int j=0; j<C; j++)
 printf("%d ", mat[i][j]);
 printf("\n");
 }

 smoothing (mat, R, C);

 printf("AFTER smoothing\n");
 for(int i=0; i<R; i++) {
 for(int j=0; j<C; j++)
 printf("%d ", mat[i][j]);
 printf("\n");
 }

 for (int i=0; i<R; i++)
 free(mat[i]);
 free(mat);

 return 0;
}

6. Consider the following set of processes:

Process Arrival Time Burst Time Priority

P0 0 12 2
P1 4 18 3
P2 8 17 1
P3 12 13 4
P4 16 20 5

Represent using a Gantt diagram the execution of these processes using the scheduling algorithms PS (Priority
Scheduling), RR (Round Robin), and SRTF (Shortest Remaining Time First). Compute the average waiting time
for each process and for the global set of processes. Consider a temporal quantum of 15 units.

Illustrate which other evaluation metrics can be used in order to compare the previously indicated scheduling
algorithms.

