
Operationg Systems

Examination task

Examples of questions of previous exams

Reserved cells

Ex. 1
Ex. 2
Ex. 3
Ex. 4
Ex. 5
Ex. 6
Tot.

ID number Surname Name

Professor: © Scanzio

It is not possible to consult texts, notes or to use calculators. The only material allowed consists in
the forms distributed by the professor. Solve the exercises in the reserved spaces. Additional sheets
are permitted only when strictly necessary. Report the main steps for solving exercises.
Duration: 100 minutes.

1. Exam 2019/02/01 Exercise 1:
Suppose that the hard disk of a small embedded system is composed if 24 blocks of 1 MByte each, which are
numbered from 0 to 23. Suppose that the operating system keeps track of the free (occupied) blocks indicating
them in a vector with the value 0 (1), and that the current situation of the disk is represented by the following
vector:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 1 0 0 0 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 0 1 0 0

With reference to the file allocation methodologies contiguous, linked, FAT and indexed, indicate how the files
File1, File2 and File3 (with dimension 2.4, 1.6 and 3.9 Mbyte, respectively) can be allocated.

Schematically report the information stored in the entry directory and the relative pointers for each strategy.

3. Exam 2019/02/01 Exercise 4:
A file has the following format:

prog1
f1.c
func1.c
main1.c
my_func.c
END
prog3
main2.c
func2_2.c
my_func.c
END
...

Implement a BASH script that:

• Receive the name of a file from command line. This file has the format previously indicated.

• Compile the files whose names are reported in the lines that do no begin with the character #. It must generate
an executable whose name is reported in the line of the file that starts with the character # and precedes the
name of the source files to be compiled. Lines containing the string END indicate the termination of the list of
source files to be compiled.

The script must also generate a directory named log (in the case it does not already exist), and copy in this
directory the output of all the compilation commands, each in a file with the same name as the executable, but with
extension .log.

For example, by running the script on the previous source file, the following commands should be generated:

gcc -Wall -o prog1 f1.c func1.c main.c my_func.c
gcc -Wall -o prog3 main2.c func2_2.c my_func.c
...

and their output must be stored in the files ./log/prog1.log and ./log/prog3.log, respectively.

4. Exam 2019/02/01 Exercise 5:
In linear algebra, matrices multiplication is an operation that produces a matrix C, by performing the product rows
by columns of two given matrices A and B.

More in details, if matrix A has dimension [r, x] and matrix B has dimension [x, c], then C has dimension [r, c], and
each element in position (i, j) can be computed as:

C[i][j] =

x−1∑
k=0

A[i][k] ·B[k][j]

Write a multi-thread function

void mat_mul (int **A, int **B, int r, int x, int c, int **C);

that can compute the product matrix C executing a thread for each of its elements.
Each thread has to compute the value of one element, executing the row by column product previously reported.
Define the data structure needed for the execution of each thread.

5. Exam 2019/02/01 Exercise 6:
Consider the following set of processes:

Process Arrival Time Burst Time Priority

P0 0 22 2
P1 0 26 3
P2 5 19 1
P3 11 17 4
P4 13 18 5

Represent using a Gantt diagram the execution of these processes using the scheduling algorithms PS (Priority
Scheduling), RR (Round Robin), and SRTF (Shortest Remaining Time First).
Compute the average waiting time for each process and for the global set of processes. Consider a temporal quantum
of 10 units.
Illustrate which other evaluation metrics can be used in order to compare the previously indicated scheduling
algorithms.

6. Exam 2019/02/27 Exercise 6:
Illustrate the terms “safe state”, “safe sequence”, and (with an example) “Resource trajectory plot”.

For the management of the deadlock, two operating systems use the graph reported on the left, and the table
reported on the right of the following figure.

P1 P2 P3

P4 P5 P6

R2 R3 R4 R5

R1 R6 Process Finish Allocation Max Need Available
R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3

P1 F 1 0 1 4 3 4 3 2 2
P2 F 0 0 1 4 4 2
P3 F 0 1 1 2 3 3
P4 F 0 0 0 5 4 5
P5 F 0 1 0 1 4 4

Considering the two cases separately, indicate whether the states represented are safe, and in the case reports a
possible safe sequence.

7. Exam 2016/02/28 Exercise 2:
Given the following precedence graph, implement it by using the minimum number of semaphores. Processes must
be cyclic (i.e., function with body while(1)).
Use the primitives init, signal, wait and destroy, indicate and eliminate any unnecessary arc, report the
main part of processes (P1, ..., P5), and the initialization of semaphores. Note that process P1 must perform two
iterations in sequence on its while loop for each global iteration over the entire precedence graph.

8. Exam 2014/09/08 Exercise 3:
Given the following precedence graph, implement it by using the minimum number of semaphores. White processes
are acyclic, while gray processes are cyclic (i.e., function with body while(1)).
Use the primitives init, signal, wait and destroy. Report semaphores initialization and destruction, and the
main part of processes (P1, ..., P9).

9. Exam 2019/02/27 Exercise 1:
Suppose that compiling the following program

#include <stdio.h>
#include <unistd.h>
#include <string.h>
int main (int argc, char *argv[]) {
int i = 2;
if (!strcmp (argv[0], "/home/quer/p")) {
i++;
fprintf (stdout, "exec 1 %d\n", i);
execlp ("echo", "./p", "/home/quer/p", "i", NULL);

}
if (!strcmp (argv[0], "/home/quer/20190227")) {
fprintf (stdout, "exec 2 %d\n", i);
execlp ("./p", "/home/quer/p", "/home/quer/20190227", "++i", NULL);

}
fprintf (stdout, "i = %d\n", i);
return (1);

}

an executable with name /home/quer/20190227 has been obtained.

Then, suppose to run the following script:

/home/quer/20190227
ln /home/quer/20190227 p
/home/quer/p

Report the control flow graph (CFG) and the process generation tree produced by its execution. In addition, indicate
what it produces on the screen and for what reason.

