
The Bash Language

Execution of a script
 Direct:

o ./scriptname args
 The file scriptname must include

“#!/bin/bash” in the first row
 Indirect

o source ./scriptname args
 It is the current shell to execute the script

Variable assigments
var_name=value

Command echo (to print on stdout)
echo [OPTIONS] [STRING]
 Options:

o -n: to not go into the new line.
o -e: to interpret escape characters.

Command read (to read from stdin)
read

o with one or more variables passed as argument
o use of the variable $REPLY

Quoting
 Single quoting ''

o variables are not exapanded
 Double quoting “”

o variables are expanded
 Ex:

o a=pippo
o echo "$a pippo "'$a'" pluto"
o pippo pippo $a pluto
o echo $a pippo '$a' pluto
o pippo pippo $a pluto

Use of { } parenthesis to delimit the name of a variable
 Es.

o name=Jean
o echo ${name}paul
o Jeanpaul

Capture of the stdout of a command
 $(<command>)

Command exit
 exit [numeber]

o terminate the execution of a process, returning a value to
the calling process

 Ex:
o exit 0
o return a true value

Execution of arithmetic computations
 a method chosen by the student
 Ex.

o let s=$n1+$n2
o Assign to the variable $s the sum of $n1 and $n2

Special shell variables
 $0, $1, $2, ...

o passing parameters on the command line
 $*

o complete list of parameters, excluding the name of the
script

 $#
o number of parameters

 $$
o PID of the process

 $?
o returned value of the last executed process

Construct if-then-else (and elsif)
if condition ; then
 statements
elif condition
then
 statements
else
 statements
fi

Construct while (including the redirection of stdin and stdout)
while condition
do
 statements
done << $fileIn >> $fileOut

Required formats for the condition of the constructs if and while
Only the conditions expressed between [...] are required
(instead, the conditions based on the keyword test are not
required)

 Numerical comparisons:
o -eq equal (==)
o -ne not equal (!=)
o -gt major (grater) (>)
o -ge major or equal (greater equal) (>=)
o -lt minor (less) (<)
o -le minor or equal (less equal) (>)

 Strings comparisons:
o = equal
o != not equal

 Conditions on files:
o -d <arg> true if <arg> is a directory
o -f <arg> true if <arg> is a file
o -r <arg> true if <arg> has read permission
o -w <arg> true if <arg> has write permission
o -x <arg> true if <arg> has execution permission

 Logical operators usable within a condition:
o ! not
o -a and
o -o or

 Logical operators usable in a list of conditions:
o && and
o || or

Costrutto for
for var in [list]
do
 statements
done

Instructions
 break
 continue

Vectors
Declarations
array[3]="value"
array=(4 8 7)
array=([0]=4 [1]=8 [2]=7 [5]=10)
Access
echo ${array[1]} # Access to the element 1 of the vector (value 8)
echo ${array[*]} # Print of all the elements of the array
echo ${!array[*]} # Print of all the keys of the array
echo ${#array[*]} # Number of elements contained in the array

Associative vector
Declarations
declare -A array
array[“key”]=”value”
array=([pippo]=hello [2]="pluto" ["pluto"]=2)
Access
echo ${array[pippo]} # Access to the element “pippo” of the array
(value “hello”)
echo ${array[*]} # Print of all the elements of the array
echo ${!array[*]} # Print of all the keys of the array
echo ${#array[*]} # Number of elements contained in the array

