
Deadlock

Deadlock prevention techniques
Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

2Operating Systems

Prevention techniques

 Try to control how resources are requested to
prevent the occurrence of at least one of the
necessary conditions

 Mutual exclusion

 Hold and wait

 No preemption

 Circular wait

3Operating Systems

Mutual exclusion

A deadlock occurs because of "mutual exclusion" when a process is
indefinitely waiting a non sharable resource.

Thus, deadlock could be avoided if
1. All resources were shareable (e.g., read-only)

2. A process could not wait for a resource not immediately available

Strategy 1 • Allow only shareable resources.
• This strategy is generally considered very

restrictive.

Strategy 2 • Inhibit a process to wait for a resource that is not
immediately available.

• This strategy is considered complex to be
implemented

4Operating Systems

Hold and wait

A deadlock occurs because of a “hold and wait" condition, where a
process requests further resources while holding one or more resources.

So a hold and wait condition can be avoided by imposing that a process
waits for a resource only when it does not hold others

Request All First
(RAF)

A process must acquire all the necessary resources
before starting its processing activities
• Poor resource usage
• Resources may be assigned a long time in

advance of their usage

Release Before
Request
(RBR)

A process can request resources only when it has not
previously acquired other resources
• Before each new request each process must

release the resources already held
• Possibility of starvation
• Processes requiring many widely used resources

may have to "start over" very often

5Operating Systems

A deadlock occurs because no preemption is possible of a resource held
by a process

In general is not easy to divert resources from a running process, but a
similar effect can be obtained by means of the following strategies:

Allow preemption
of resources held
by the process

itself

• If a process that holds some resources asks for
another that cannot be immediately granted, it is
forced to release all held resources (preemption).

• These resources are added to the list of resources
that the process is waiting for.

• The process will be awakened only when it can
regain its old resources, and additionally the new
one.

No preemption

6Operating Systems

A deadlock occurs because no preemption is possible of a resource held
by a process

Allowing
preemption of

resources owned
by another

process as long as
it is waiting

• If process P asks for a resource that is not
immediately available, a search is performed for
the process that currently holds it

• If a process Q is found, which is waiting for
another resource, preempt from Q the resource
and assign it to process P

• Otherwise, process P goes on the waiting state, so
that the resources it hold can be preempted

Both strategies
• are suited for resources whose state can be easily saved and restored

(CPU registers, main memory, etc.)
• are not suited for resources whose state cannot be recovered (files,

printers, etc.)

No preemption

7Operating Systems

A deadlock occurs because of a "circular wait" when a set of processes is
waiting for a resource held by another set o processes

To avoid this condition, one can impose a total ordering of all resource
classes

Hierarchical
Resource Usage

(HRU)

• It imposes a total ordering relation between the
various types of resources, associating to each of
them an integer number. Example: HD = 1, DVD
= 5, printers = 12

• Force each process to request resources with an
increasing order of enumeration

In general, the HRU verification is applied by
• Programmer
• Operating system. The witness tool, available in

FreeBSD UNIX version, checks the order of the
lock acquired by processes

Circular wait

8Operating Systems

 Let F be the function that imposes a unique order

among all classes of system resources Ri

 Let a process have previously requested an instance
of Rold resource, and now request a Rnew instance

 If F (Rnew) > F (Rold)

 The resource is granted

 If F (Rnew) ≤ F (Rold)

 The process must release all resources Ri such that

F (Rnew) ≤ F (Ri) before getting an instance of Rnew

Circular wait

9Operating Systems

Circular wait

 It can be shown that this condition is sufficient to
avoid the circular wait

 That is, if the resources are requested in a certain
order, is it true that it is not possible to have a
circular wai

 We proceed using a demonstration of type
"reduction to absurdity", assuming there is a
circular wait, i.e., supposing there is a set of
processes that

 They were requested in the specified order, e.g., in
increasing numerical order

 They are in circular wait

10Operating Systems

 Let’s suppose that there exists a set of processes
that satisfy the HRU rules and are in circular wait

The order of requests requires that
F(Rk) < F(Rk+1), k = 0 .. n – 1 .

This implies
F(R0) < F(R1) < ...< F(Rn) < F(R0)

F(R0) < F(R0) ,
which is absurd

P0

R0

P1

R1

Pn

Rn

…

Circular wait

Request order
R0,...,Rn

Since Pi holds Ri and it has required Ri-1

Ri was requested before Ri-1

Thus, F(Ri)>F(Ri-1)

