
Threads

Threads
Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

2Operating Systems

Processes: Characteristics

 A process may execute other processes through

 Cloning (UNIX, fork)

 Replacing the current image with another image
(UNIX, exec)

 explicit call (Windows, CreateProcess)

 A process has

 Its own address space

 A single execution thread (a single program
counter)

3Operating Systems

 Synchronization and data transfer

 No cost or minimal for (almost) independent
processes

 High cost for cooperating processes

 Cloning involves

 A significant increase in the memory used

 Creation time overhead

 Management of multiple processes requires

 Scheduling

 Expensive context switching operations (with kernel
intervention)

Processes: Limits

Standard process = heavyweight process
A task with a single thread of execution

4Operating Systems

 There are several cases where it would be useful
to have

 Lower creation and management costs

 A single address space

 Multiple execution threads (concurrency) within
that address space

 Example

 WEB applications

 A server must responds quickly to many access
requests

 The requests are submitted at the same time, and
require similar processing of the data, etc.

From processes to threads

5Operating Systems

 The 1003.1c POSIX standard introduces the
concept of threads

 The thread model allows a program to control
multiple different flows of operations (scheduled
and executed independently) that overlap in time

 Each flow of operations is referred to as a thread

 Creation and control over these flows is achieved by
making calls to the POSIX Threads API.

 A thread can share its address space with other
threads

From processes to threads

Process = unit that groups resources
Thread = CPU scheduling unit

Thread = hlightweight process

6Operating Systems

From processes to threads

 Shared data

 Code section

 Data section (variables, file descriptors, etc.)

 Operating system resources (e.g., signals)

 i.e., shared data: static variables, external variables,
dynamics variables (heap)

 Private data

 Program counter and hardware registers

 Stack, i.e., local variables and execution history

... with the other threads of the
same process ...

Obvious, since a thread implies
its own flow of execution
(within the same process)

7Operating Systems

From processes to threads

Process

Thread 1

Thread 2

8Operating Systems

A process with a
single thread

A process with three threads
Sharing requires protection !

From processes to threads

9Operating Systems

Threads: Pros

 The use of threads allows

 Shorter response time

 Creating a thread it is 10-100 times faster than
creating a process

 Example

● The creation of 50000 jobs (fork) takes 10 seconds

(real time)

● The creation of 50000 thread (pthread_create)

takes 0.8 seconds (real time)

 Shared resources

 Processes can share data only with special
techniques

 Threads share data automatically

10Operating Systems

Threads: Advantages

 Lower costs for resource management

 Allocate memory to a process is expensive

 Threads use the same section of code and/or data
to serve more clients

 Increased scalability

 The advantages of multi-threaded programming
increase in multi-processor systems

 In multi-core systems (different calculation units per
processor) threads allow easily implementing
concurrent programming paradigms based on

● Task separation (pipelining)

● Data partitioning (same task on data blocks)

11Operating Systems

Threads: Disadvantages

 There is no protection for threads

 They are executed in the same address space and
OS protection is impossible or unnecessary

 If the threads are not synchronized, access to
shared data is not thread safe

 There is not a parent-child hierarchical
relationship between threads

 To the creating thread is normally returned the
identifier of the created thread, but this does not
imply a hierarchical relationship

 All threads are "equal"

12Operating Systems

Concurrency with threads

 Optimize the following code segment that
performs the scalar product of four huge
dimension vectors (v1, v2, v3, v4)

for (i=0; i<n; i++) {

v[i] = v1[i] * v2[i] + v3[i] * v4[i];

}

With processes, data sharing would
be expensive and prevent its use

With threads, data sharing is
automatic and concurrency is

immediate

13Operating Systems

Concurrency with threads

mult (a, b) {

for (i=a; i<b; i++)

v[i] = v1[i] * v2[i] + v3[i] * v4[i];

}

...

CreateThread (mult, 0, n/2);

CreateThread (mult, n/2, n);

Care has to be taken to avoid
• the use of non-reentrant procedures
• the use of non-reentrant library functions
• access to common variables, etc.

Data partition with a divide-and-conquer
strategy

A thread perform its task
on its partition of the data

14Operating Systems

Multithread programming models

 Three multithread programming models exist

 Kernel-level thread

 Thread implemented at kernel-level

 The kernel directly supports the thread concept

 User-level thread

 Thread implemented at user-level

 The kernel is not aware that threads exist

 Mixed or hybrid solution

 The operating system provides both user-level and
kernel threads

The choice is moderately
controversial

15Operating Systems

Kernel-level threads

 Threads are managed by the kernel

 The OS

 Manipulates both processes and threads

 Is aware of the existence of threads

 Provides adequate support for their handling

 All the operations on threads (creation,
synchronization, etc.) are performed through
system calls

16Operating Systems

Kernel-level threads

 The operating system, for each thread, keeps
information similar to those it maintains for each
process

 Thread table

 Thread Control Block (TCB) for each active thread

 Managed information is

"global" within the whole OS

17Operating Systems

Kernel-level threads

 Advantages

 Since the operating system is aware of threads, it
can select

 Thread to schedule among the ready threads of all
processes

● Global view of all threads of all processes

 Possibly allocating more CPU time to processes with
many threads than to processes with few threads

18Operating Systems

Kernel-level threads

 Effectiveness in applications that perform often
blocking calls (e.g., blocking read)

 Ready threads can be scheduled even if they belong
to the same task of a thread that called a blocking
system call

 That is, if one thread blocks, it is always possible to
execute another thread in the same process (or in
another) because the OS checks all the threads of all
the processes

 It allows an effective parallelism

 Multiple threads can be executed in a multiprocessor
system

19Operating Systems

Kernel-level threads

 Disadvantages

 Due to the transition to kernel mode the
management is relatively slow and inefficient

 Expensive context switching

 Handling times hundreds of times slower than
necessary

 Limitation on the maximum number of threads

 The OS must control the number of generated
threads

 Expensive information management (thread table
and TCB)

Already mentioned for processes
(motivation for the introduction of threads)

20Operating Systems

User-level threads

 The thread package is fully implemented in the
user space, as a set of functions

 The kernel is not aware about threads, it
manages only processes

 Threads are managed run-time through a library

 Support by means of a set of functions, called from
user-space

 Thread creation, synchronization, scheduling, etc. do
not require kernel intervention

 Function are used, not system calls

21Operating Systems

User-level threads

 Each process needs a personal table of running
threads

 Needed information is less than the management
at the kernel-level

 Smaller TCBs

 Local visibility of

information

(within the process)

22Operating Systems

User-level threads

 Advantages

 Can be implemented on top of any kernel, even in
systems that do not support threads natively

 Do not require modifications to the OS

 Efficient management

 Fast context switching between threads of the same
task

 Efficient data manipulation

 Hundreds of times faster than kernel threads

 Allow the programmer to generate the desired
number of threads

 It might be possible to think of scheduling/custom
management of threads within each process

23Operating Systems

User-level threads

 Disadvantages

 The operating system does not know the existence
of threads

 Inappropriate or inefficient choices can be made

 The OS could schedule a process whose running
thread could do a blocking operation

 In this case, the whole process could be blocked
even if inside it several other threads could be
executed

24Operating Systems

User-level threads

 Information should be communicated between
kernel and run-time user-level manager

 Without this communication mechanism

 Exist only on running thread for each task even in a
multiprocessor system

 There is no scheduling within a single process, i.e.,
interrupts do not exist within a single process

 If a running thread does not release the CPU, it
cannot be blocked

25Operating Systems

User-level threads

 The scheduler must map user threads to the single
kernel thread

 If the kernel thread blocks, all the user-level threads
are blocked

 There is no true thread-level parallelism without
handling multiple threads at the kernel-level

26Operating Systems

Hybrid implementation

 One of the multi-thread programming problems is
to define the relationship between user-level
threads and kernel-level threads

 Practically all modern OSs have a kernel thread

 Windows, UNIX, Linux, MAC OS X, Solaris

 The basic idea is to have

m user threads and to map

them to n kernel threads

 Typically, n<m

27Operating Systems

Hybrid implementation

 The hybrid implementation attempts to combine
the advantages of both approaches

 The user decides the number of its user-level
threads, and the number of kernel-threads on
which they must be mapped

 The kernel is aware only of

the kernel thread and only

manages those threads

 Each kernel thread can be

used in turn by several

user threads

28Operating Systems

Processes and threads coexistence

 Several problems arise due to the coexistence of
processes and threads

 Using the system call fork

 A fork duplicates only the thread that makes the
call, or all the threads of the process?

 Example

 P has two threads T1 and T2

 T1 is waiting on a read, while T2 performs a fork

 Now we have P and its child, both with T1 waiting
on a read

 Which thread T1 will receive data? Only one?
Which? Both?

29Operating Systems

Processes and threads coexistence

 Using the system call exec

 Does the exec replace only the calling thread with the

new process, or all threads?

 Signal management

 If a process receives a signal which thread will catch it?

 A thread should indicate its interest in handling the signal.
What happens if multiple threads indicate their interest to
catch a signal? Which will handle the signal?

 Some systems provide different versions of the
system call fork

 forkall, duplicates all process threads

 fork1, duplicates only the calling thread

