Deadlock

Deadlock avoidance techniques
Stefano Quer, Pietro Laface, and Stefano Scanzio
Dipartimento di Automatica e Informatica
Politecnico di Torino
skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

Operating Systems 2

Deadlock avoidance

%+ Deadlock avoidance techniques force the
processes to provide (a priori) additional
information about the requests they will perform
during their execution

» Each process must indicate how many resources of
all types it will need to terminate its task

» This information allows a process scheduling order
so that there is the guarantee of no deadlock
= If granting immediately a requested resource to a

process can cause deadlock, the process is forced to
wait (by not assigning the resource to the process)

Operating Systems G 1l 3

Deadlock avoidance

%+ The main algorithms

> differ in the amount and type of information
required
= The simplest model imposes that all processes
declare the maximum number of resources of each
type that they will need
> generally reduce the use of resources and the
efficiency of the system

> are based on the concept of safe state and safe
sequence

Operating Systems

|

Safe state

Safe sequence

Unsafe states

Deadlock

The system is able to

» Allocate the required resources to all
processes

» Prevent the occurrence of a deadlock

« Find a safe sequence

A sequence of process scheduling {P{, P, ...,
P} such that for each requests that could be
performed by any P;, the request can be
satisfied by using the currently available
resources and the other resources released by
processes Pj withj < i

A state is said unsafe if it is not
safe.

An unsafe state is not necessarily

a deadlock state. It can leads to a

Safe states deadlock state in case of standard

behavior.

Operating Systems e 5

Joint progress of two processes

Resource trajectory] Safe / unsafe states in
P, Progress terms of the joint
A progress of 2 processes
P, — E Z —>
Use of | . ; Use of USB-drive by P, and P,
USB-drive | __________|] o L _____-Use of USB-drive
| 11 ''''''' by P, and P,
—————————————————————————— ':/A-————————————————-
= I Use of HD by P; and P,
------------ ; : bomm - Single CPU >
P,: ! ! EN horizontal or vertical
Use of HD | | i sub-paths
: : : 5
P,: Use of HD S P, progress

Unsafe region . _
deadlock at top-right point | ¢ P,: Use of USB;Inve

Operating Systems T 6

Strategies

%+ To avoid a deadlock, one must ensure that the
system remains always in a safe state
> Initially the system is in a safe state

» Each new resource request

= will be granted immediately, if this allows the
system to remain in a safe state

= otherwise, granting the request will be delayed;
the process that performed the request is forced to
wait
% There are two classes of strategies
» For resources having unitary instances

> For resources having multiple instances

Operating Systems

Algorithm for resources with a single instance

%+ Based on the determination of cycles, using the
claim-for graph

> All requests must be a priori declared
> they are represented by claimarcs ---»
% At a time a request is performed

» the corresponding claim arc is transformed into an
assignment arc

> Before the request is satisfied, the algorithm verify
the presence of cycles

@/ j\a Assignment @/

\:I,f-" Release "

R,

R

Operating Systems 17> 8

Algorithm for resources with a single instance

» If no cycle is present, the conversion of the arc is
performed and the resource assigned

» Otherwise, the assignment of the requested
resource would bring the system into an unsafe
state. For this reason it is postponed

%+ Each time a resource is released

» the assignment arc is transformed into a claim arc
(to manage any subsequent request)

Ry

@/ j\a Assignment @/

‘:Ig Release g

A, R,

R

Operating Systems 9

Algorithm for resources with multiple instances

% Verify the state of the system to understand if
the available resources are sufficient to complete
all processes based on

% the number of resources available to the system,
“+ number of resources allocated, and
% max number of resource that the process may need

%+ Each process

» must declare in advance its maximum number of
resources it may need

» when it requests a resource, it can be blocked for
a limited amount of time

» must guarantee to return an allocated resource in
a finite amount of time

Operating Systems 1= 10

Algorithm for resources with multiple instances

< Banker's Algorithm (Dijkstra, [1965])
> It consists of two parts

= Verifies that the current state is safe

= Verifies whether the new request can be
immediately granted allowing to system to remain in
a safe state
e Simulates assigning the resource, and controls that a
sequence of assignments exists that allows the

system to satisfy all requests, possibly delaying the
delivery of the resources for some of the requests.

% The algorithm uses the data structures listed in
the following slide

Operating Systems 11

Algorithm for multiple instances

Given a set of:
n processes P,
m resources R,

Name Dim. Content and meaning
finish [n] finish[r] initially false (indicates P, has not compete)
allocation [n][m] allocation[r][c]=k
P, owns k instances of R.
max [n][m] max [r][c]=k
P, can ask a maximum of k instances of R.
need [n][m] need[r][c]=k

P, needs k additional instances of R_
Vivj need[i][j]=max[i][j]-allocation[i][]]

available [m] available[c]=k
k resources R.are available

Operating Systems T j 74

% By applying the banker algorithm, the underlying
system is in a safe state?
» Safe sequence: Py, P5, Py, P>, P,

P finish allocation max need available
RoRi{R, RyR;R, RyR;R, RyR;R,

Po F 010 /753 332

P F 200 322

P, F 302 902

P F 211 222

P, F 002 433

Operating Systems 114 13
< Can the request of P, (1, 0, 2) be satisfied?

> Yes ...
» System state evolution ...

P finish allocation max need available
RoRi{R, RyR;{R, R;R;R, Ry Ry Ry

Py F 010 /753 /743 332

P F 200 322 122

P, F 302 902 600

P F 211 222 011

P, F 002 433 431

Operating Systems 1= 14

% The new state is safe or not?
» Safe sequence: Py, P5, Py, P4, P,

P finish allocation max need available
RyR; R, RoR;R, RyR;R, RyRR,

Py F 010 /753 /743 230

P F 302 322 020

P, F 302 902 600

P F 211 222 011

P, F 002 433 431

Operating Systems 3]

Same initial state

< Can the request of P, (3, 3, 0) be satisfied?
> No ... there is not availability

< Can the request of P, (0, 3, 0) be satisfied?
> No ... the resulting state is not safe

Example

P finish allocation max need available
RyRi{R, RyR;{R, R;R;R, Ry Ry Ry

Py F 010 /753 /743 230

P F 302 322 020

P, F 302 902 600

P F 211 222 011

P, F 002 433 431

Operating Systems

16
< Verify a set of requests performed by P.
/ N
if
V; requests[i] [j] <= need [i][]]
and
erequests[i][j] <= available[]j]
then
V; available[]] -= requests[i] [J]
V; allocation[i] [j] += requests[i][]j]
V, need[i] []] -= requests[i] []j]
if the resulting state is safe then
the assignment is confirmed,
else

the previous state is restored

Operating Systems

17

|

< Verify whether a state is safe or unsafe

e

A

1.

ViV3j need[i] [j]= max[i][]j] - allocation[i][j]
Vi finish[i]=false

Find a process P; such that
finish[i]=false AND Vj need[i] [j] <= available[j]
If no such i1 is found goto step 4

Vj available[j] += allocation[i][j]
finish[i]=true
goto step 2

if Vi finish[i]=true then
system is in a safe state

Operating Systems T 18
< Can the request of P, (1, 0, 1) be satisfied?

> Yes ...

% Can the request of P, (1, 0, 1) be satisfied?
> No ... the resulting state is not safe

P finish allocation max need available
RoRi{R, RyR;R, RyR{R, RyR;R,

Py F 100 322 112

P F 511 613

P, F 211 314

P F 002 422

19

Operating Systems 1 ‘i ,i

% Are the following states safe or unsafe?

(single resource problems)

P F A M N

Po F 3 9

P, F 2 4

P, F 2 7 ... safe state
P F A M N

Po F 4 9

P, F 2 4

P, F 2 7 ... unsafe state

Operating Systems 1= 20

Banker's algorithm

% Complexity is
>0 (m-n?)=0([R]-[P]?)
% It is also based on unrealistic assumptions
> Processes must specify their demands in advance
= The necessary resources are not always known
= Also it is not known when a resource will be used

> Assumes that the number of resources is constant

= Resources may increase or decrease due to transient
or continuous failures

> It requires a fixed population of processes

= The number of active processes in the system
increases and decreases dynamically

