
Deadlock

Deadlock prevention techniques
Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

2Operating Systems

Prevention techniques

 Try to control how resources are requested to
prevent the occurrence of at least one of the
necessary conditions

 Mutual exclusion

 Hold and wait

 No preemption

 Circular wait

3Operating Systems

Mutual exclusion

A deadlock occurs because of "mutual exclusion" when a process is
indefinitely waiting a non sharable resource.

Thus, deadlock could be avoided if
1. All resources were shareable (e.g., read-only)

2. A process could not wait for a resource not immediately available

Strategy 1 • Allow only shareable resources.
• This strategy is generally considered very

restrictive.

Strategy 2 • Inhibit a process to wait for a resource that is not
immediately available.

• This strategy is considered complex to be
implemented

4Operating Systems

Hold and wait

A deadlock occurs because of a “hold and wait" condition, where a
process requests further resources while holding one or more resources.

So a hold and wait condition can be avoided by imposing that a process
waits for a resource only when it does not hold others

Request All First
(RAF)

A process must acquire all the necessary resources
before starting its processing activities
• Poor resource usage
• Resources may be assigned a long time in

advance of their usage

Release Before
Request
(RBR)

A process can request resources only when it has not
previously acquired other resources
• Before each new request each process must

release the resources already held
• Possibility of starvation
• Processes requiring many widely used resources

may have to "start over" very often

5Operating Systems

A deadlock occurs because no preemption is possible of a resource held
by a process

In general is not easy to divert resources from a running process, but a
similar effect can be obtained by means of the following strategies:

Allow preemption
of resources held
by the process

itself

• If a process that holds some resources asks for
another that cannot be immediately granted, it is
forced to release all held resources (preemption).

• These resources are added to the list of resources
that the process is waiting for.

• The process will be awakened only when it can
regain its old resources, and additionally the new
one.

No preemption

6Operating Systems

A deadlock occurs because no preemption is possible of a resource held
by a process

Allowing
preemption of

resources owned
by another

process as long as
it is waiting

• If process P asks for a resource that is not
immediately available, a search is performed for
the process that currently holds it

• If a process Q is found, which is waiting for
another resource, preempt from Q the resource
and assign it to process P

• Otherwise, process P goes on the waiting state, so
that the resources it hold can be preempted

Both strategies
• are suited for resources whose state can be easily saved and restored

(CPU registers, main memory, etc.)
• are not suited for resources whose state cannot be recovered (files,

printers, etc.)

No preemption

7Operating Systems

A deadlock occurs because of a "circular wait" when a set of processes is
waiting for a resource held by another set o processes

To avoid this condition, one can impose a total ordering of all resource
classes

Hierarchical
Resource Usage

(HRU)

• It imposes a total ordering relation between the
various types of resources, associating to each of
them an integer number. Example: HD = 1, DVD
= 5, printers = 12

• Force each process to request resources with an
increasing order of enumeration

In general, the HRU verification is applied by
• Programmer
• Operating system. The witness tool, available in

FreeBSD UNIX version, checks the order of the
lock acquired by processes

Circular wait

8Operating Systems

 Let F be the function that imposes a unique order

among all classes of system resources Ri

 Let a process have previously requested an instance
of Rold resource, and now request a Rnew instance

 If F (Rnew) > F (Rold)

 The resource is granted

 If F (Rnew) ≤ F (Rold)

 The process must release all resources Ri such that

F (Rnew) ≤ F (Ri) before getting an instance of Rnew

Circular wait

9Operating Systems

Circular wait

 It can be shown that this condition is sufficient to
avoid the circular wait

 That is, if the resources are requested in a certain
order, is it true that it is not possible to have a
circular wai

 We proceed using a demonstration of type
"reduction to absurdity", assuming there is a
circular wait, i.e., supposing there is a set of
processes that

 They were requested in the specified order, e.g., in
increasing numerical order

 They are in circular wait

10Operating Systems

 Let’s suppose that there exists a set of processes
that satisfy the HRU rules and are in circular wait

The order of requests requires that
F(Rk) < F(Rk+1),  k = 0 .. n – 1 .

This implies
F(R0) < F(R1) < ...< F(Rn) < F(R0)

F(R0) < F(R0) ,
which is absurd

P0

R0

P1

R1

Pn

Rn

…

Circular wait

Request order
R0,...,Rn

Since Pi holds Ri and it has required Ri-1

Ri was requested before Ri-1

Thus, F(Ri)>F(Ri-1)

