
Synchronization

Semaphores
Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

2Operating Systems

Introduction

 The previous solutions are not satisfactory,
because

 software solutions are complex to use from the
point of view of the programmer

 hardware solutions are difficult to implement from
the point of view of the hardware designer

 OSs provide more appropriate primitives called
semaphores

 Introduced by Dijkstra in 1965

 They are not based on busy waiting
implementation, and therefore they do not waste
resources

3Operating Systems

Definition

 A semaphore S is a shared structure including

 A counter

 A waiting queue, managed by the kernel

 Both protected by a lock

 Operations on S are atomic

 Atomicity is managed by the OS

 It is impossible for two threads to perform
simultaneous operations on the same semaphore

typedef struct semaphore_tag {

char lock; // Lock variable protects count

// and queue management

int cnt; // Counter

process_t *head; // Thread list

} semaphore_t;

4Operating Systems

Manipulation functions

 Typical operations on a semaphore S

 init (S, k)

 Defines and initializes the semaphore S to the value k

 wait (S)

 Allows (in the reservation code) to obtain the access
of the CS protected by the semaphore S

 signal (S)

 Allows (in the release code) to release the CS
protected by the semaphore S

 destroy (S)

 Frees the semaphore S

sleep, down, P

wakeup, up, V

They are not the "wait" and
"signal" seen in the past

5Operating Systems

Semaphore primitives

 init(S, k)

 Defines and initializes semaphore S to value k

 Two types of semaphores

 Binary semaphores

● The value of k is only 0 or 1

 Counting semaphores

● The value of k is non negative

known as "mutex lock"
(mutex ≡ MUTual EXclusion)

k is a counter

init (S, k) {

alloc (S);

S=k;

}

Logical implementation

Atomic operation

6Operating Systems

Semaphore primitives

 wait(S)

 If the counter value of S is negative or zero blocks

the calling T/P

 If S is negative, its absolute value S indicates the
number of waiting threads

 The counter is decremented at each call

wait (S) {

while (S<=0);

S--;

}

Logical implementation

Atomic
operation

wait (S) {

if (S==0) block();

else S--;

}

Other possible (and equivalent)
logical implementationIn the logical versions

S is always positive

Real implementations do
not use busy waiting

7Operating Systems

Semaphore primitives

 wait(S)

 Originally called P() from the Dutch language

"probeer te verlagen", i.e., "try to decrease"

 Not to be confused with the wait system call used
to wait for a child process

wait (S) {

while (S<=0);

S--;

}

Logical implementation

Atomic
operation

wait (S) {

if (S==0) block();

else S--;

}

Other possible (and equivalent)
logical implementationIn the logical versions

S is always positive

Real implementations do
not use busy waiting

8Operating Systems

Semaphore primitives

 signal(S)

 Increases the semaphore S

 If S counter is negative or zero some T/P was

blocked on the semaphore queue, and it can be
wakeup

 Originally called V(), from the Dutch language

"verhogen", i.e., "to increment"

 Not to be confused with system call signal that
is used to declare a signal handler

signal (S) {

if (blocked())

wakeup();

else S++;

}

signal (S) {

S++;

}

Logical
implementation

Atomic operation
(register=s;register++;s=register;)

Other possible (and equivalent)
logical implementation

9Operating Systems

Semaphore primitives

 destroy(S)

 Release semaphore S memory

 Actual implementations of a semaphore require
much more of a simple global variable to define a
semaphore

 This function is often not used in the examples

destroy (S) {

free (S);

}

Logical
implementation

10Operating Systems

Semaphore primitives

 The semaphore queue

 Is implemented in kernel space by means of a
queue of Thread Control Blocks

 The kernel scheduler decides the queue
management strategy (not necessarily FIFO)

11Operating Systems

while (TRUE) {

wait (S);

CS

signal (S);

non critical section

}

while (TRUE) {

wait (S);

CS

signal (S);

non critical section

}

Pi / Ti Pj / Tj

Mutual exclusion with semaphore

init (S, 1);

Remember:

wait (S) {

while (S<=0);

S--;

}

signal (S) {

S++;

}

12Operating Systems

Critical sections of N threads

init (S, 1);

...

wait (S);

CS

signal (S);

T1 T2 T3 S queue

1

wait 0

CS1 wait -1 T2

b
lo

ck
e
d wait -2 T2, T3

b
lo

ck
e
d

-2 T2, T3

signal -2 T2, T3

CS2 -1 T3

signal 0

CS3 0

signal 1

At most one T/P
at a time in the
critical section

13Operating Systems

Critical sections of N threads

init (S, 2);

...

wait (S);

CS

signal (S);

T1 T2 T3 S queue

2

wait 1

CS1 wait 0

CS2 wait -1 T3

b
lo

ck
e
d -1 T3

signal 0

CS3 0

signal 1

signal 2

Threads 1 and 2 in
their CSs

Threads 2 and 3 in
their CSs

At most two T/P
at a time in the
critical section

14Operating Systems

Synchronization with semaphores

 The use of semaphores is not limited to the
Critical Section access protocol

 Semaphores can be used to solve any
synchronization problem using

 An appropriate positioning of semaphores in the
code

 Possibly, more than one semaphore

 Possibly, additional shared variables

15Operating Systems

Pure synchronization: Example 1

 Obtain a specific order of execution

 Ti executes code A before Tj executes code B

init (S, 0);

……

wait (S);

B;

……

……

A;

signal (S);

……

Ti Tj

A

…..

…..

B

…..

…..

Ti Tj

16Operating Systems

while (TRUE) {

wait (S1);

process data

signal (S2);

...

}

Pure synchronization: Example 2

while (TRUE) {

prepare data

signal (S1);

wait (S2);

get processed data

}

 Synchronize two T/P so that

 Tj waits Ti

 then, Ti waits Tj

 It is a client-server schema

init (S1, 0);

init (S2, 0);

Ti / Pi Tj / Pj

17Operating Systems

B;

signal (S);

Pure synchronization : Example 3

A;

wait (S);

C;

 Implement this precedence graph

init (S, 0);

BA

CTi

Tj

Ti Tj

18Operating Systems

Pure synchronization : Example 3

A;

signal (S);

 Other possible solution involving 3 P/T

init (S, 0);

BA

C

Ti Tj

Ti

Tk

wait (S);

wait (S);

C;

Tk B;

signal (S);

Tj

19Operating Systems

Pure synchronization : Example 4

PnP2

Pn+1

P0

P1
...

P0
for(i=1;i<=n;i++)

signal (S1);

...

init (S1, 0);

init (S2, 0);

...

for(i=1;i<=n;i++)

wait (S2);

Pn+1

wait (S1);

Pi
signal (S2);

...

P0/T0 Pn+1/Tn+1Pi/Ti

 Implement this precedence graph

cobegin-coend
(concurrent begin-end)

Note: These threads
are not cyclic

S1

S2

20Operating Systems

Errors using semaphores: Example 1

 Just a single thread is incorrect

Enters its CS and makes possible that
the two other threads enter their CSs

while (TRUE) {

...

signal (S); !!

CS1

wait (S); !!

...

}

T1 T2

while (TRUE) {

...

wait (S);

CS3

signal (S);

...

}

T3

while (TRUE) {

...

wait (S);

CS2

signal (S);

...

}

init (S, 1);

21Operating Systems

Errors using semaphores: Example 2

 Just a single thread is incorrect

When the second wait is executed all
thread are in deadlock

while (TRUE) {

...

wait (S);

CS1

wait (S); !!

...

}

T1 T2

while (TRUE) {

...

wait (S);

CS3

signal (S);

...

}

T3

while (TRUE) {

...

wait (S);

CS2

signal (S);

...

}

init (S, 1);

22Operating Systems

Errors using semaphores: Example 3

 Just a single thread is incorrect

When the first signal is executed, two threads can enter their CSs.
When the second signal is executed, all threads can enter their CSs.

while (TRUE) {

...

signal(S); !!

CS1

signal(S);

...

}

T1 T2

while (TRUE) {

...

wait (S);

CS3

signal (S);

...

}

T3

while (TRUE) {

...

wait (S);

CS2

signal (S);

...

}

init (S, 1);

23Operating Systems

Errors using semaphores: Example 4

 Just a single thread is incorrect

After T1 exit its CS, all
threads will be in deadlock

while (TRUE) {

...

wait(S);

CS1

!! no signal(S)

...

}

T1 T2

while (TRUE) {

...

wait (S);

CS3

signal (S);

...

}

T3

while (TRUE) {

...

wait (S);

CS2

signal (S);

...

}

init (S, 1);

If T3 is fast, all threads can
enter their CSs

24Operating Systems

Errors using semaphores: Example 5

 Just a single thread is incorrect

while (TRUE) {

...

!! no wait(S);

CS1

signal (S);

...

}

T1 T2

while (TRUE) {

...

wait (S);

CS3

signal (S);

...

}

T3

while (TRUE) {

...

wait (S);

CS2

signal (S);

...

}

init (S, 1);

If T3 is fast (i.e., it does two loops in the
while cycle), all threads can enter their CSs

25Operating Systems

Errors using semaphores: Example 6

while (TRUE) {

...

wait (S);

... Use S

wait (Q);

... Use S and Q

signal (Q);

signal (S);

...

}

T1

init (S, 1);

init (Q, 1);

while (TRUE) {

...

wait (Q);

... Use Q

wait (S);

... Use Q and S

signal (S);

signal (Q);

...

}

T2

Access to pen-drive, then to HD Access to HD, then to pen-drive

Acquiring two
resources

26Operating Systems

Exercise

 Given the code of these three threads

 Which is the possible execution order?

...

while (1) {

wait (S1);

T1 code

signal (S2);

}

...

...

while (1) {

wait (S2);

T3 code

signal (S1);

}

...

...

while (1) {

wait (S2);

T2 code

signal (S2);

}

...

init (S1, 1);

init (S2, 0);

T1 T2 T3

27Operating Systems

Solution

P1

P3

P2

...

while (1) {

wait (S1);

T1 code

signal (S2);

}

...

...

while (1) {

wait (S2);

T3 code

signal (S1);

}

...

...

while (1) {

wait (S2);

T2 code

signal (S2);

}

...

init (S1, 1);

init (S2, 0);

T1 T2 T3

S2

S2

S2

S2

S1

 It is a peculiar synchronization example !!

28Operating Systems

Exercise

 Implement this precedence
graph using semaphores

 All T/P must be cyclic

T1

T3

T2

This way they don't have to be
instantiated several times

29Operating Systems

Solution

...

while (1) {

wait (S1);

T1 code

signal (S2);

}

...

...

while (1) {

wait (S3);

T3 code

signal (S1);

}

...

...

while (1) {

wait (S2);

T2 code

signal (S3);

}

...

init (S1, 1);

init (S2, 0);

init (S3, 0);

T1 T2 T3

 Implement this precedence
graph using semaphores

 All T/P must be cyclic

T1

T3

T2

30Operating Systems

Exercise

T2

T1

T4

T3

 Implement this precedence
graph using semaphores

 T/P are not cyclic

31Operating Systems

Solution

T1 code

signal (S1);

signal (S1);

...

...

wait (S2);

wait (S2);

T4 code

...

wait (S1);

T2 code

signal (S2);

...

...

wait (S1);

T3 code

signal (S2);

...

init (S1, 0);

init (S2, 0);

T1 T3

T2

T4

T2

T1

T4

T3

 Implement this precedence
graph using semaphores

 T/P are not cyclic

32Operating Systems

Exercise

 Implement this precedence
graph using semaphores

 All T/P must be cyclic
T2

T1

T4

T3

33Operating Systems

Erroneous solution

init (S1, 1);

init (S2, 0);

init (S3, 0);

while (1) {

wait (S1);

T1 code

signal (S2);

signal (S2);

}

while (1) {

wait (S2);

T2 code

signal (S3);

}

while (1) {

wait (S2);

T3 code

signal (S3);

}

while (1) {

wait (S3);

wait (S3);

T4 code

signal (S1);

}

T1
T3

T2

T4

 Implement this precedence
graph using semaphores

 All T/P must be cyclic
T2

T1

T4

T3
S3

S2

S1

OK

NO

34Operating Systems

Solution

init (S1, 1);

init (S2, 0);

init (S3, 0);

init (S4, 0);

while (1) {

wait (S1);

T1 code

signal (S2);

signal (S3);

}

while (1) {

wait (S2);

T2 code

signal (S4);

}

while (1) {

wait (S3);

T3 code

signal (S4);

}

while (1) {

wait (S4);

wait (S4);

T4 code

signal (S1);

}

T1
T3

T2

T4

 Implement this precedence graph
using semaphores

 All T/P must be cyclic
T2

T1

T4

T3
S4

S1S3S2

35Operating Systems

Exercise

 Implement this
precedence graph
using semaphores

 T/P are not cyclic

T0

T2
T1

T5

T7T6

T8

T3

T4

36Operating Systems

Erroneous solution

init (S1, 0);

init (S2, 0);

init (S3, 0);

...

T0
T0 code

signal(S1);

signal(S1);

signal(S1);

T0

T2
T1

T5

T7T6

T8

T3

T4

T1
wait(S1);

T1 code

signal(S2);

signal(S2);

T2
wait(S1);

T2 code

signal(S2);

T3
wait(S1);

T3 code

...

T4
wait(S2);

T4 code

...

T5
wait(S2);

wait(S2);

T5 code

... …

37Operating Systems

Solution

init (S1, 0);

init (S2, 0);

init (S3, 0);

...

T0
T0 code

signal(S1);

signal(S2);

signal(S3);

T0

T2
T1

T5

T7T6

T8

T3

T4

T1
wait(S1);

T1 code

signal(S4);

signal(S5);

T2
wait(S2);

T2 code

signal(S5);

T3
wait(S3);

T3 code

signal(S7);

T4
wait(S4);

T4 code

signal(S6);

T5
wait(S5);

wait(S5);

T5 code

signal(S6);

signal(S7);
…

38Operating Systems

Solution

T0

T2
T1

T5

T7T6

T8

T3

T4

T6
wait(S6);

wait(S6);

T6 code

signal(S8);

T7
wait(S7);

wait(S7);

T7 code

signal(S8);

T8
wait(S8);

wait(S8);

T8 code

This solution is correct, but the number of
semaphores is not minimal.

39Operating Systems

Exercise

 Implement this
precedence graph
using semaphores

 Version A: T/P are
not cyclic, but use
the minimum
number of
semaphores

 Version B: T/P are
cyclic

T0

T2
T1

T5

T7T6

T8

T3

T4

40Operating Systems

Real implementations

 There are several semaphores implementations

 Semaphores by means of a pipe

 POSIX Pthread

 Condition variables

 Semaphores

● The most important

 Mutex (for mutual exclusion)

 Linux semaphores

 Notice that semaphores are

 Global share objects (see sem_init)

 They are allocated by a thread, but they are kernel
objects

System call:
pthread_cond_init

pthread_cond_wait

pthread_cond_signal

pthread_cond_broadcast

pthread_cond_destroy

System call:
semget, semop, semctl

(in sys/sem.h) they are

complex to use

41Operating Systems

 Given a pipe

 The counter of a semaphore is achieved by means
of tokens

 Signal implemented using the write system call
to write a token on the pipe (non-blocking)

 Wait implemented using the read system call to
read a token from the pipe (blocking)

Semaphore by means of a pipe

write
(signal)

read
(wait)

42Operating Systems

semaphoreInit (s)

#include <unistd.h>

void semaphoreInit (int *S, int k) {

char ctr = 'X';

int i;

if (pipe (S) == -1) {

printf ("Error"); exit (-1);

}

for(i=0; i<k; i++)

if (write(S[1], &ctr, sizeof(char)) != 1) {

printf ("Error"); exit (-1);

}

return;

}

 Semaphore initialization

 The variable S must be defined as a global variable
● int S[2];

● int *S = malloc (2 * sizeof (char));

Writes k
characters, i.e.,
initializes the
semaphore
counter to k

43Operating Systems

semaphoreSignal (s)

#include <unistd.h>

void semaphoreSignal (int *S) {

char ctr = 'X';

if (write(S[1], &ctr, sizeof(char)) != 1) {

printf ("Error");

exit (-1);

}

return;

}

 Writes a character (any) on a pipe

 Suppose the number of writes (signals) before a
read (wait) not exceed the dimension of the pipe

Writes a single character,
i.e., increments the

semaphore counter k

44Operating Systems

semaphoreWait (s)

#include <unistd.h>

void semaphoreWait (int *S) {

char ctr;

if (read (S[0], &ctr, sizeof(char)) != 1) {

printf (“Error”);

exit (-1);

}

return;

}

 Reads a character from a pipe (read is blocking)

If the pipe is empty,
read() waits

45Operating Systems

Example

int main() {

int S[2];

pid_t pid;

semaphoreInit (S, 0);

pid = fork();

// Check for correctness

if (pid == 0) { // child

semaphoreWait (S);

printf("Wait done.\n");

} else { // parent

printf("Sleep 3s.\n");

sleep (3);

semaphoreSignal (S);

printf("Signal done.\n");

}

return 0;

}

Use of a pipe as a synchronization
semaphore between P parent and P child

46Operating Systems

 Kernel and OS independent system calls (POSIX)

 Header file
● #include <semaphore.h>

 A semaphore is a type sem_t variable

 sem_t *sem1, *sem2, ...;

 All semaphore system calls

 Have name sem_xxxx

 On error returns -1

POSIX semaphores

System calls:
sem_init

sem_wait

sem_trywait

sem_post

sem_getvalue

sem_destroy

47Operating Systems

sem_init ()

int sem_init (

sem_t *sem,

int pshared,

unsigned int value

);

 Initializes the semaphore counter at value value

 The pshared value identifies the type of

semaphore

 If equal to 0, the semaphore is local to the threads

of current process

 Otherwise, the semaphore can be shared between
different processes (parent that initializes the
semaphore and its children) Linux does not currently support

shared semaphores

48Operating Systems

sem_wait ()

int sem_wait (

sem_t *sem

);

 Standard wait

 If the semaphore is equal to 0, it blocks the caller
until it can decrease the value of the semaphore

49Operating Systems

sem_trywait ()

int sem_trywait (

sem_t *sem

);

 Non-blocking wait

 If the semaphore counter has a value greater than
0, perform the decrement, and returns 0

 If the semaphore is equal to 0, returns -1 (instead
of blocking the caller as sem_wait does)

50Operating Systems

sem_post ()

int sem_post (

sem_t *sem

);

 Standard signal

 Increments the semaphore counter, or wakes up a
blocked thread if present

51Operating Systems

sem_getvalue ()

int sem_getvalue (

sem_t *sem,

int *valP

);

 Allows obtaining the value of the semaphore
counter

 The value is assigned to *valP

 If there are waiting threads

 0 is assigned to *valP (Linux)

 or a negative number whose absolute value is equal
to the number of processes waiting (POSIX)

Better not to use this function. From Linux
manual: "The value of the semaphore may already
have changed by the time sem_getvalue() returns."

52Operating Systems

sem_destroy ()

int sem_destroy (

sem_t *sem

);

 Destroys the semaphore at the address pointed
by sem

 Destroying a semaphore that other threads are
currently blocked on produces undefined behavior
(on error, -1 is returned)

 Using a semaphore that has been destroyed
produces undefined results, until the semaphore
has been reinitialized

53Operating Systems

Example

...

#include "semaphore.h"

...

sem_t *sem;

...

sem = (sem_t *) malloc(sizeof(sem_t));

sem_init (sem, 0, 1);

...

... create processes or threads ...

...

sem_wait (sem);

... CS ...

sem_post (sem);

Of use of sem_xxxx POSIX
functions for synchronization

54Operating Systems

 Binary semaphores (mutex)

 A mutex is of type pthread_mutex_t

 System calls

 pthread_mutex_init

 pthread_mutex_lock

 pthread_mutex_trylock

 pthread_mutex_unlock

 pthread_mutex_destroy

Pthread mutex

Alternative to sem_xxxx primitives, mutex is
less general than semaphores (i.e., they can

assume only the two values 0 or 1)

55Operating Systems

pthread_mutex_init ()

int pthread_mutex_init (

pthread_mutex_t *mutex,

const pthread_mutexattr_t *attr

);

 Initializes the mutex referenced by mutex with
attributes specified by attr (default=NULL)

 Return value

 0 on success

 Error code otherwise

56Operating Systems

pthread_mutex_lock ()

int pthread_mutex_lock (

pthread_mutex_t *mutex

);

 Control the value of mutex and

 Blocks the caller if the mutex is locked

 Acquire the mutex lock if the mutex is unlocked

 Return value

 0 on success

 Error code otherwise

57Operating Systems

pthread_mutex_trylock ()

int pthread_mutex_trylock (

pthread_mutex_t *mutex

);

 Similar to pthread_mutex_lock, but returns
without blocking the caller if the mutex is locked

 Return value

 0 if the lock has been successfully acquired

 EBUSY error if the mutex was already locked by

another thread

58Operating Systems

pthread_mutex_unlock ()

int pthread_mutex_unlock (

pthread_mutex_t *mutex

);

 Release the mutex lock (typically at the end of a
Critical Section)

 Return value

 0 on success

 Error code otherwise

59Operating Systems

pthread_mutex_destroy ()

int pthread_mutex_destroy (

pthread_mutex_t *mutex

);

 Free mutex memory

 The mutex cannot be used any more

 Return value

 0 on success

 Error code otherwise

