
UNIX/Linux Operating System

Shell scripts
Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

2Operating Systems

Introduction to shell scripts

 Shell languages are interpreted languages

 There is no explicit compilation

 Pros & Cons

 Shell available in every UNIX / Linux environment

 Faster production cycle

 Lower run-time efficiency

 Fewer debugging possibilities

 Used to write software

 "Quick and dirty"

 Sometimes a prototype, which is then translated
into a low-level language such as C

3Operating Systems

Introduction to scripts

 BASH vs. Python (and other)

 Choice

 The main strength of BASH with respect to other
languages (python, ruby, lua, etc.) is its ubiquity

 If the number of code lines is less than 100, it is
better to choose BASH, otherwise Python

4Operating Systems

Introduction to scripts

 BASH vs. Python (and other)

 Performance

 To have high performance write a program not a
script

 The BASH interpreter is very fast to start (starting
phase)

 If you need to manipulate ASCII files, or heavily use
shell commands or filters like sort, uniq, etc., BASH
is more suitable and faster ("will smoke Python
performance wise")

 If you need to manipulate floating point numbers
Python is convenient ("will win hands down")

5Operating Systems

 Scripts

 Are normally stored in files with .sh extension (or
.bash)

 But recall that the extensions are not used
UNIX/Linux to determine the file type

 They can be executed using two techniques

 Direct execution

 Indirect execution

Introduction to shell scripts

6Operating Systems

 The script is executed from the command line as
a normal executable file

 The script file must have the execute permission
 chmod +x ./scriptname

 The first line of the script can specify the name of
the script interpreter

 #!/bin/bash or #!/bin/sh

 It is possible to execute the script using a specific
shell
 /bin/bash ./scriptname args

Direct execution

./scriptname args

7Operating Systems

Direct execution

 The script is executed by a sub-shell

 i.e., by a new shell process

 Environment (variables) of the original process and
of the new one are not the same

 Changes to the environment variables made by the
script, and used within the script, are lost at exit

./scriptname args

8Operating Systems

 The source command executes the script given
as its argument

 It is the current shell to run the script

 "The current shell sources the script"

 It is not necessary that the script is executable

 The changes made by the script to environment
variables remain in effect in the current shell

Indirect execution

source ./scriptname args

9Operating Systems

Example: direct and indirect execution

#!/bin/bash

NULL Script

exit 0

Indirect execution :
> source scriptName.sh<return>
The shell executes the script. Executing
exit the shell process terminates
(i.e., you kill the starting/original shell)

Direct execution:
> scriptName.sh<return>

The shell executes the script as a
sub-shell. Executing exit the sub-

shell terminates. The initial
process resumes control.

indicates a
comment

10Operating Systems

Script debugging

 There are not specific tools to debug bash scripts

 It is obviously always possible to add explicit
"echo"

 However, it is possible to "debug" a script in the
following way

 Full (the whole script)

 It is obtained by indicating a "debug" option at the
level of the entire script

 Partial (only a few lines of the script)

 It is obtained by indicating a "debug" option at the
level of some lines of the script using the set
command

11Operating Systems

Script debugging

 Possible options for both partial and full debug

 -o noexec, -n

 Executes a syntactic check, but the script is not
executed

 -o verbose, -v

 Displays the executed commands

 -o xtrace, -x

 Displays the execution trace of the entire script

 -o nounset, -u

 Prints a error for undefined variables

12Operating Systems

Script debugging

 Fully debug

 From a shell command

 /bin/bash -n ./scriptname args

 Inside the script

 #!/bin/bash -v

 #!/bin/bash -x

 ...

 Partial debug
 set -o verbose ... set +o verbose

 set -v ... set +v

 set -x ... set +x

13Operating Systems

 The bash language is relatively "high level", and
it allows to mix

 Standard shell commands
● ls, wc, find, grep, ...

 Standard constructs of the shell language

● Input and output variables and parameters,
operators (arithmetic, logic, etc.), control constructs
(conditional, iterative), arrays, functions, etc.

 Often instructions/commands are written in
separate lines

 on the same line, they must be separated by ';'

Syntax: general rules

14Operating Systems

Syntax: general rules

 Comments

 Character # indicates the presence of a comment

on the line

 A comment begins by character # and

terminates at the end of line

 exit allows terminating a script returning

an error code

 exit

 exit [0|1]

● In shell, 0 means TRUE

15Operating Systems

#!/bin/bash

This line is a comment

rm –rf ./../newDir/

mkdir ./../newDir/

cp * ../newDir/

ls ../newDir/ ;

0 is TRUE in shell programming

exit 0

Example of shell commands

Absolute path

';' superfluous

From the calling shell:
echo $?
returns 0

16Operating Systems

Arguments

 The arguments of the command line passed to the
script are identified by $

 Positional parameters

 $0 is the script name

 $1, $2, $3, ... indicate the arguments

passed to the script on the command line

 Special parameters

 $* Is the entire list (string) of arguments

(excluding the script name)

 $# Is the number of parameters (excluding the

script name)

 $$ Is the process PID

The shift command shifts
the parameters to the left
($0 remains unchanged)

17Operating Systems

#!/bin/bash

Using command line parameters

echo "Running process is $0"

echo "Parameters: $1 $2 $3 etc."

echo "Number of parameters $#"

echo "List of parameters $*"

shift

echo "Parameters: $1 $2 $3 etc."

shift

echo "Parameters: $1 $2 $3 etc."

exit 0

Argument passing example

$0, $1, etc. can also
be written outside

"..."

The "..." (double
quotes) expand the

variables

$0 remains
unchanged;

consequently $1=$2,
$2=$3, etc.

Again $0 remains
unchanged;

consequently $1=$2,
$2=$3, etc.

18Operating Systems

Variables

 Variables can be

 Local (shell variables)

 Available only in the current shell

 Global (environment variables)

 Available in all sub-shells

 Are exported by the current shell to all the process
executed by the shell

19Operating Systems

 Main features of shell variables

 Are not declared

 A variable is created by assigning a value to the
variable name

 Are case sensitive

 Var, VAR, and var are different variables

 Some names are reserved for special purposes

 The list of all defined variables and associated
value is displayed by command set

 The unset command clears the value of a
variable

 unset name

Variables

20Operating Systems

 Characterized by a name and associated content

 The content specifies the type

 Constant, string, integer, vector or matrix

 The contents associated to a name are strings
(even if a string can be interpreted as a numeric
value)

 Setting
 name="value"

 Usage

 $name

No blanks around '='

Double quotes are mandatory if
the string includes blank characters

Local (shell) variables

21Operating Systems

Examples

> var=Hello

> echo $var

Hello

> var=7+5

> echo $var

7+5

> i="Hello world!"

> echo $i

Hello world!

> i=$i" Bye!!!"

> echo $i

Hello world! Bye!!!

> i=Hello world

> world: command not found

Variables are strings !!

> let var=7+5

> echo $var

12

Assign an arithmetic
expression to a variable

(more details later)

Assignment is incorrect
(do to the blank)

Use quotes

Strings concatenation

22Operating Systems

Global (environment) variables

 The export command allows creating an

environment variable visible by other processes
 export name

 Notice that

 Some environment variable names are predefined
and reserved

 When a shell is executed these variables are
automatically initialized starting from
"environment" values

 These variable names are typically uppercase

 Can be displayed by means of the printenv (or
env) command

23Operating Systems

Example: local and global variable

> v=one

> echo $v

one

> bash

> ps -l

… Two bashes running

> echo $v

> exit

> echo $v

one

> v=one

> echo $v

one

> export v

> bash

> ps –l

… Two bashes running

> echo $v

one

> exit

> echo $v

one

Current shell local variable

Global variable because it
has been exported by the

sub-shell

This variable is
not set

24Operating Systems

#!/bin/bash

clear

echo "Hello, $USER!"

echo

echo "List logged users"

w #or who

echo "Set two local variables"

COLOR="black"; VALUE="9"

echo "String: $COLOR"

echo "Number: $VALUE"

echo

echo "Completed"

#exit

Example: variables

Clear video

w: shows the

logged users

Also without explicit exit

Set commands on
the same line

25Operating Systems

Variable Meaning

$? Stores the return value of the last process:
0 on success, other than 0 (between 1 and 255) on
error. Value 0 corresponds to the TRUE value (unlike
in C language)

$SHELL Current shell

$LOGNAME Username used for login

$HOME User home directory

$PATH List of the directories, delimited by ’:’ used for
searching the executable files and commands

$PS1
$PS2

Main prompt (usually ’$’ for users, ’#’ for root)
Auxiliary prompt (usually ’>’)

$IFS Lists the characters that delimits the "words" in an
input string (see read shell command)

Predefined variablesPartial list

26Operating Systems

Examples

$ PS1="> "

> echo $HOME

...

> v=$PS1

> echo $PS1

...

> PS1="myPrompt > "

myPrompt > echo $v

...

> myExe

myExe: command not found

> PATH=$PATH:.

> myExe

... myExe running ...

shell prompt modifications

> ls foo

ls: cannot access foo:

No such file or directory

> echo $?

2

> ls bar*

bar.txt

> echo $?

0

PATH modification,
adding current directory

Return value of a
command (0=TRUE)

27Operating Systems

Read from stdin

 The read function allows reading a line from

standard input

 Syntax

 read [options] var1 var2 ... varn

 read can be possibly followed by a list of variables

 The "words" of the read line will be assigned in turn
to each variable

 Possible excess words are all stored (as a string) in
the last variable

 If no variables are specified, the complete input
string is stored in variable REPLY

28Operating Systems

 Supported options
 -n nchars

● Returns after reading nchars characters without

waiting for newline

 -t timeout

● Timeout on reading

● Returns 1 if a string is not typed within timeout

seconds

 etc.

Read from stdin

29Operating Systems

Examples: read from stdin

> read v1 v2

input line string

> echo $v1

input

> echo $v2

line string

> read

> One two three

> echo $REPLY

One two three

> read

One two three

> v=$REPLY

> echo $v

One two three

> read v

input line string

> echo $v

input line string

Input string assigned to
variable v

Input string assigned to
the default variable

REPLY

2 variables, but input
string includes 3 words

30Operating Systems

Exercise

 Write a bash script that takes two integer
numbers and prints their sum and product

#!/bin/bash

Sum and product

echo –n "Reading n1: "

read n1

echo –n "Reading n2: "

read n2

let s=n1+n2

let p=n1*n2

echo "Sum: $s"

echo "Product: $p"

exit 0

from stdin

Arithmetic
expression

(more detail
later)

No blanks around
=, +, *

-n no

newline

31Operating Systems

Exercise

 Write a bash script that reads a username, and
displays her/his number of logins

 The list of logged users is produced by command
who or w

#!/bin/bash

Number of login(s) of a specific user

echo –n "User name: "

read user

who is logged | look for username | word count

times=$(who | grep $user | wc –l)

echo "User $user has $times login(s)"

exit 0

--lines = -l =

of lines

Use of shell
commands,

variables, etc.

32Operating Systems

Exercise

 Write a bash script that reads a string, and
displays its length

#!/bin/bash

String length

echo "Type a word: "

read word

echoing without newline | word count chars

l=$(echo –n $word | wc –c)

echo "Word $word is $l characters long"

exit 0

--chars = -c = # of chars
--bytes = -b = # of bytes

echo –n = no new line

33Operating Systems

Write to stdout

 Output on stdout can be performed using

 echo

 printf

 Function printf syntax is similar to C language

printf

 Uses escape characters

 It is not necessary to delimit fields by ","

34Operating Systems

 echo

 Displays its arguments, delimited by blank, and
terminated by newline

 Options

 -n eliminates the newline

 -e interprets escaped (\...) characters

● \b backspace

● \n newline

● \t tab

● \\ backslash

● etc.

Write to stdout

35Operating Systems

Examples: I/O

echo "Printing with a newline"

echo –n "Printing without newline"

echo –e "Deal with \n escape \t\t characters"

printf "Printing without newline"

printf "%s \t%s\n" "Hello. It's me:" "$HOME"

#!/bin/bash

Interactive input/output

echo –n "Insert a sentence: "

read w1 w2 others

echo "Word 1 is: $w1"

echo "Word 2 is: $w2"

echo "The rest of the line is: $others"

exit 0

Output: Hello. It's me: /home/scanzio

I & O together inside the same script

36Operating Systems

Arithmetic expressions

 Several notations can be used for defining
arithmetic expressions

 Command let "…"

 Double parentheses ((…))

 Square parentheses […]

 Syntactic statement expr

 Evaluates an expression by means of a new shell

 Less efficient

 Normally not used

Notice that an arithmetic expression is evaluated as TRUE
(exit status) IFF it is not 0

expression !=0 TRUE exit status=0 TRUE

37Operating Systems

Examples

> i=1

> let v1=i+1

> let "v2 = i + 1"

> let v3=$i+1

> echo $i $v1 $v2 $v3

1 2 2 2

> i=1

> ((v1=i+1))

> ((v2=$i+1))

> v3=$(($i+1))

> v4=$((i+1))

> echo $i $v1 $v2 $v3 $v4

1 2 2 2 2Use of let

> i=1

> v1=$[$i+1]

> v2=$[i+1]

> echo $i $v1 $v2

1 2 2

Use of ((e))

Use of [e]

If it is not between "..." the
expression cannot include

blanks

Alternative syntaxes for
arithmetic expressions

38Operating Systems

 The conditional statement if-then-fi

 Checks if the exit status of a sequence of
commands is equal to 0

 Recall: 0=TRUE in UNIX shell

 If so, it executes one or more commands

 The statement can also include an else condition
statement

 if-then-else-fi

 which allows also performing nested checks
 if-then-…-if-then-…-fi-fi

 if-then-elif-…-fi

Conditional statement: if-then-fi

39Operating Systems

Nested
if-then-else-fi

can be written as
if-then-elif-fi

Conditional statement: if-then-fi

Syntax 3

if condExpr

then

statements

else

statements

fi

Syntax 4

if condExpr

then

statements

elif condExpr

then

statements

else

statements

fi

Syntax 1

if condExpr

then

statements

fi

Syntax 2

if condExpr ; then

statements

fi

Statement on a
single line: ’;’
is mandatory

Standard
format With else

40Operating Systems

 condExpr

 Conditional expressions can use two syntactic
flavors

Conditional statement: if-then-fi

Syntax 1

test param op param

Syntax 2

[param op param]

Square parentheses must be
delimited by a blankDifferent operators for

• Numbers
• Strings
• Logical values
• Files and directories

41Operating Systems

Operators for numbers

-eq ==

-ne !=

-gt >

-ge >=

-lt <

-le <=

! ! (not)

Operators for strings

= strcmp

!= !strcmp

-n string non NULL string

-z string NULL (empty) string

Operators for files and directories

-d Argument is a directory

-f Argument is a regular file

-e Argument exists

-r Argument has read permission

-w Argument has write permission

-x Argument has execution permission

-s Argument has non-null dimension

Logical operators

! NOT

-a AND (inside [])

-o OR (inside [])

&& AND (in a sequence of commands)

|| OR (in a sequence of commands)

Conditional statement: if-then-fi

42Operating Systems

Examples

if [0] # false

if [1] # true

if [-1] # true

if [] # NULL is false

if [str] # a random string is true,

e.g., "abc" or abc is true

if [$v1 –eq $v2]

then

echo "v1==v2"

fi

Logical values

Test on numbers

if [$v1 -lt 10]

then

echo "$v1 < 10"

else

echo "$v1 >= 10"

fior
if test $v1 –eq $v2

43Operating Systems

Examples: file check

if ["$a" -eq 24 -a "$s" = "str"]; then

...

fi
AND of conditions

Equivalent format ([≡ test command)
if ["$a" -eq 24] && ["$s" = "str"]

if [["$a" -eq 24 && "$s" = "str"]]

if [$recursiveSearch -eq 1 -a -d $2]

then

find $2 -name *.c > $3

else

find $2 -maxdepth 1 *.c > $3

fi

44Operating Systems

if [$string = "abc"]; then

echo "string \"abc\" found"

fi

Examples: string check

Test on strings

If $string is null (e.g., return from input) the syntax is
incorrect because is evaluated as: [= "abc"]

Use double quotes for a error resistant syntax:
if ["$string" = "abc"]; then

which would be evaluated as: ["" = "abc"]

if [-f foo.c]; then

echo "foo.c is in this directory"

fi Test on file

45Operating Systems

#!/bin/sh

echo –n "Is it morning (yes/no)? "

read string

if ["$string" = "yes"]; then

echo "Good morning"

else

echo "Good afternoon"

fi

exit 0

Examples: whole script

Reading string from stdin
Check the string

Display of the output

46Operating Systems

Examples: whole script

#!/bin/sh

echo –n "Is it morning (yes/no)? "

read string

if ["$string" = "yes"]; then

echo "Good morning"

elif ["$string" = "no"]; then

echo "Good afternoon"

else

echo "Sorry, wrong answer"

fi

exit 0

Reading string from stdin
Check the string

Display of the output
Use of elif

47Operating Systems

 Statement for-in (for var in list)

 Executes the commands, for each value taken by
variable var

 The list of values can be given

 Explicitly (list)

 Implicitly (result of shell commands di shell, wild-
cards, etc.)

Syntax 1

for var in list

do

statements

done

Syntax 2

for var in list; do

statements

done

Iterative statement for-in

Remark: definite construct, i.e., iterates a
predefined number of times

48Operating Systems

for str in foo bar echo charlie tango

do

echo $str

done

Examples: for with list

for foo in 1 2 3 4 5 6 7 8 9 10

do

echo $foo

done

Displays a list of strings

Displays a list of
"numbers"

num="2 4 6 9 2.3 5.9"

for file in $num

do

echo $file

done

Displays a list of numbers
using a variable

(arrays, see later)

49Operating Systems

Examples: for and wild-chars

rm –f number.txt

for i in $(echo {1..50})

do

echo –n "$i " >> number.txt

done

Append the numbers from
1 to 50 to file

number.txt, in the same

line and separated by a space

’>’ would overwrite

number.txt at every

iteration

for f in $(ls | grep txt); do

chmod g+x $f

done

n=1

for i in $* ; do

echo "par #" $n = $i

let n=n+1

done

Displays all the parameters
received on the command line

Iterates on the parameter
of the scripts

Change privileges to
specific files

50Operating Systems

Examples: for and wild-chars

Changes the
privileges of files with
name including digit 7

for file in [ab]* ; do

rm -fr $file

echo "Removing file $file"

done

for f in $(ls | grep 7); do chmod g+x $f; done

Remove files with name
beginning by

a OR b

51Operating Systems

 Iterates while the condition is true

 the number of iterations is unknown

Syntax 1

while [cond]

do

statements

done

Syntax 2

while [cond] ; do

statements

done

Iterative statement while-do-done

52Operating Systems

#!/bin/bash

limit=10

var=0

while ["$var" -lt "$limit"]

do

echo "Here var is equal to $var"

let var=var+1

done

exit 0

Example

Displays 10 times a
message

53Operating Systems

#!/bin/bash

echo "Enter password: "

read myPass

while ["$myPass" != "secret"]; do

echo "Sorry. Try again."

read myPass

done

exit 0

Example

Displays a message
until the correct
string is given

54Operating Systems

#!/bin/bash

n=1

while read row

do

echo "Row $n: $row"

let n=n+1

done < in.txt > out.txt

exit 0

Example of read with stdin redirection

Since the while-do-done statement is considered to be unique,
the redirection (of I/O) must be done at the end of the statement

Constant filenames.
Possibility to use parameters or

variables: ... <$1 > $var

Reads complete
lines from stdin Writing

echo ... > out.txt
implies to rewrite file out.txt
at any iteration. You can use:

echo ... >> out.txt

Writing
while read row < in.txt
will always re-read the first

line of the file

55Operating Systems

Exercise

 Write a bash script that

 Takes two integers n1 and n2 from command line,
otherwise reads them from stdin (if not present)

 Display a matrix of n1 rows and n2 columns of
increasing integer values starting from 0

 Example

> ./myScript 3 4

0 1 2 3

4 5 6 7

8 9 10 11

56Operating Systems

#!/bin/bash

if [$# -lt 2] ; then

echo -n "Values: "

read n1 n2

else

n1=$1

n2=$2

fi

Solution

n=0

r=0

while [$r -lt $n1] ; do

c=0

while [$c -lt $n2] ; do

echo -n "$n "

let n=n+1

let c=c+1

done

let r=r+1

echo

done

exit 0

Reads input
data

Double loop
for displaying

the values

57Operating Systems

 break and continue statements have the

same meaning in shell and in C language

 break: unstructured exit from the cycle

 continue: skip to the next iteration of the cycle

 Character ’:’ can be used

 For creating "null instructions"
 if [-d "$file"]; then

 : # Empty instruction

 fi

 For indicating a TRUE condition
 while :

 equivalent to while [0]

Break, continue and ':'

58Operating Systems

Arrays

 bash define also one-dimensional arrays

 Any variable can be defined as an array

 Explicit declaration is not required (but possible with
the declare construct)

 No restriction

 On the dimension of the array

 On the use of contiguous indices

 Indices usually start from 0

 Zero-base indexing, as in C language

Arrays in shell are not
associative (no hashing)

59Operating Systems

Arrays

 Suppose name is the name of a vector

 Definition

 Element-wise
● name[index]="value"

 By means of a list of values

● name = (list of values separated by blanks)

 Reference

 A single element
● ${name[index]}

 All elements
● ${name[*]} The use of {} is

mandatory

* or @

A new element can be
created at any time

60Operating Systems

Arrays

 Number of elements
 ${#name[*]}

 Length of the i-th element (number of characters)
 ${#name[i]}

 Statement unset eliminates

 an element
 unset name[index]

 an array
 unset name

61Operating Systems

Examples: arrays

> vet=(1 2 5 hello)

> echo ${vet[0]}

1

> echo ${vet[*]}

1 2 5 hello

> echo ${vet[1-2]}

2 5

> vet[4]=bye

> echo ${vet[*]}

1 2 5 hello bye

> unset vet[0]

> echo ${vet[*]}

2 5 hello bye

> unset vet

> echo ${vet[*]}

> vet[5]=100

> vet[10]=50

> echo ${var[*]}

100 50

Non contiguous
indexes

Initialized by a list
Elimination

62Operating Systems

Exercise

 Write a bash script that

 Reads a sequence of numbers, one per line,
ending by 0

 Displays the values read in inverse order

 Example
Input n1: 14

...

Input n10: 123

Input n11: 0

Output: 123 ... 14

63Operating Systems

Solution

#!/bin/bash

i=0

while [0]; do

echo -n "Input $i: "

read v

if ["$v" -eq "0"] ; then

break;

fi

vet[$i]=$v

let i=i+1

done

echo

let i=i-1

while ["$i" -ge "0"]

do

echo "Output $i: ${vet[$i]}"

let i=i-1

done

exit 0

Output
in inverse order

or :
Input

echo $ {vet [*]}
would display the

elements in the same
order and separated

by a space

