
Synchronization

Classical Synchronization Problems
Stefano Quer and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

2Operating Systems

Producer-Consumer

 Producer and consumer with limited memory

 It uses a circular buffer of dimension SIZE to store
the elements to be produced and consumed

 The circular buffer implements a FIFO queue
(First-In First-Out)

b

P

C

B

P

C

a

B

c

P

C

B

head
(out)

tail
(in)

full FIFO,
empty,

partially full

3Operating Systems

Sequential access

#define SIZE ...

...

int queue[SIZE];

int tail, head;

...

void init () {

tail = 0;

head = 0;

n = 0;

}

void dequeue (int *val) {

if (n<=0) return;

*val=queue[head];

head=(head+1)%SIZE;

n--;

return;

}

void enqueue (int val) {

if (n>SIZE) return;

queue[tail] = val;

tail=(tail+1)%SIZE;

n++;

return;

}

FIFO standard (non ADT)

4Operating Systems

Sequential vs parallel access

 In the sequential access enqueue and dequeue
are concurrent

 In parallel access we can have two cases

 Only 1 producer and only 1 consumer

 The operations enqueue and dequeue act on
different extremes of the queue, however the n
variable is shared

 P producers and C consumers

 In addition to the previous case, concurrent access
operations to the same extreme of the queue are
possible

5Operating Systems

Concurrent access: Version 1

 For parallel access with 1 producer and 1
consumer

 You have to insert

 A semaphore "full" that counts the number of filled
elements

 A semaphore "empty" that counts the number of
empty elements

 The counter n can be removed

6Operating Systems

#define SIZE ...

...

int queue[SIZE];

int tail, head;

...

void init () {

tail = 0;

head = 0;

}

void dequeue (int *val) {

*val=queue[head];

head=(head+1)%SIZE;

return;

}

void enqueue (int val) {

queue[tail] = val;

tail=(tail+1)%SIZE;

return;

}

FIFO standard (non ADT)
without the variable n

Concurrent access: Version 1

7Operating Systems

Consumer () {

int val;

while (TRUE) {

wait (full);

dequeue (&val);

signal (empty);

consume (val);

}

}

Producer () {

int val;

while (TRUE) {

produce (&val);

wait (empty);

enqueue (val);

signal (full);

}

}

init (full, 0);

init (empty, SIZE);

Instead of n it uses
elements filled

elements empty

1 Producer
1 Consumer

Concurrent access: Version 1

8Operating Systems

 Solution 1 is simmetric

 The producer produces filled positions

 The consumer produces empty positions

 It can be easily extended to the case where
there are more producers and more consumers

 Producers and consumers operates on opposite
extremes of the buffer

 It can be done concurrently

 As long as the queue is not completely full or
completely empty

 Instead, two producers or two consumers must act
in mutual exclusion

Concurrent access: Version 2

9Operating Systems

Consumer () {

int val;

while (TRUE) {

wait (full);

wait (MEc);

dequeue (&val);

signal (MEc);

signal (empty);

consume (val);

}

}

Producer () {

int val;

while (TRUE) {

produce (&val);

wait (empty);

wait (MEp);

enqueue (val);

signal (MEp);

signal (full);

}

}

init (full, 0);

init (empty, SIZE);

init (MEp, 1);

init (MEc, 1);

P Producers
C Consumers

It is necessary to force mutual
exclusion between P and C

Concurrent access: Version 2

10Operating Systems

Readers & Writers

 Classical problem

 Courtois et al. [1971]

 Share data between two sets of concurrent
processes

 A set of Readers, which can access concurrently
to the data

 A set of Writers, which can access in mutual
exclusion, both with other Writers and Readers
processes, to the data

 Construct often used to create new synchronization
primitives

11Operating Systems

Readers & Writers

 There are two versions of the problem

 Precedence to Readers

 Precedence to Writers

 Common goals

 Respect the precedence protocol

 Maximize concurrency

12Operating Systems

Precedence to Readers

 Giving precedence to Readers means

 Privileging Readers access over Writers access, i.e.

 Readers do not have to wait as long as a writer is
in the CS

 Access protocol

 Readers can concurrently access to the data

 Until the Readers arrive, Writers have to wait

 When even the last Reader ends, then you can
wake up a writer (or a reader ... it depends on the
scheduler)

13Operating Systems

wait (w);

...

writing

...

signal (w);

wait (meR);

nR++;

if (nR==1)

wait (w);

signal (meR);

...

reading

...

wait (meR);

nR--;

if (nR==0)

signal (w);

signal (meR);

Reader

Precedence to Readers: Version 1

nR = 0;

init (meR, 1);

init (w, 1);

Writer

14Operating Systems

wait (meW);

wait (w);

...

writing

...

signal (w);

signal (meW);

wait (meR);

nR++;

if (nR==1)

wait (w);

signal (meR);

...

reading

...

wait (meR);

nR--;

if (nR==0)

signal (w);

signal (meR);

Reader

Precedence to Readers: Version 2

nR = 0;

init (meR, 1);

init (meW, 1);

init (w, 1);

Writer

To enforce the precedence to R
(the signal(w) unblocks an R)

15Operating Systems

Conclusions

 The solution uses

 A global variable (nR) counts the number of
Readers in the CS

 A semaphore for the mutual exclusion for the
access to the variable nR (meR)

 A semaphore for the mutual exclusion of more
Writers, or a Reader and the Writers (w)

 Un semaforo di mutua eslusione per writer (meW)

 Writers are subject to starvation, because they
can wait (be blocked) forever

 More complex solutions without starvation of the
Writers are possible

16Operating Systems

Precedence to Writers

 Giving priority to writers means

 A Writer that is ready, must wait the smallest
possible time

 Access protocol

 Each Writer must wait that all Readers finish

 Each Writer has a higher priority than every
Reader

17Operating Systems

wait (meW);

nW++;

if (nW == 1)

wait (r);

signal (meW);

wait (w);

...

writing

...

signal (w)

wait (meW);

nW--;

if (nW == 0)

signal (r);

signal (meW);

wait (r);

wait (meR);

nR++;

if (nR == 1)

wait (w);

signal (meR);

signal (r);

...

reading

...

wait (meR);

nR--;

if (nR == 0)

signal (w);

signal (meR);

Precedence to Writers

Reader Writer

nR = nW = 0;

init (w, 1); init (r, 1);

init (meR, 1); init (meW, 1);

18Operating Systems

Conclusions

 The solution uses

 Two global variables (nR and nW) to count the
number of Readers and Writers

 Two semaphores to guarantee mutual exclusion
(meR and meW) for the access to the variables nR
and nW

 Two semaphores to guarantee mutual exclusion
between Readers/Writers (r and w)

 Reader are subject to starvation, because they
can wait (be blocked) forever

 More complex solutions without starvation are
possible

19Operating Systems

The "Alternate direction tunnel"

 In an alternate direction tunnel

 Allow any number of cars (processes) to proceed
in the same direction

 If there is traffic in one direction, block traffic in
the opposite direction

20Operating Systems

The "Alternate direction tunnel"

 Extension to the Readers-Writers problem, with
two sets of Readers

 Data structure

 Two global counters (n1 and n2), one for each
direction

 Two semaphores (s1 and s2), one for each
direction

 A global semaphore for wait (busy)

 In its basic implementation, it can cause
starvation of cars (in one direction with respect
to the other)

21Operating Systems

wait (s2);

n2++;

if (n2 == 1)

wait (busy);

signal (s2);

...

Run (left to right)

...

wait (s2);

n2--;

if (n2 == 0)

signal (busy);

signal (s2);

wait (s1);

n1++;

if (n1 == 1)

wait (busy);

signal (s1);

...

Run (left to right)

...

wait (s1);

n1--;

if (n1 == 0)

signal (busy);

signal (s1);

Solution

left2right right2left

n1 = n2 = 0;

init (s1, 1); init (s2, 1);

init (busy, 1);

22Operating Systems

Dining (5) philosophers problem

 Model in which different resources are common
to different concurrent processes

 Due to Dijkstra [1965]

 Definition of the problem

 A table is set with

 5 rice dishes

 5 (Chinese) chopsticks each between two plates

 Around the table sit 5 philosophers

 Philosophers think or eat

 To eat each philosopher needs two chopsticks

 Chopsticks can be obtained one at a time

23Operating Systems

Model 0

 "Philosophical" solutions (not correct)

 Teach philosophers to eat with only 1 chopstick

 Provide more than 5 chopsticks

 Allow only at most to 4 philosophers to sit at the
table

 Force asymmetry

 Even position philosophers take
the left fork first

 Odd position philosophers take
the right fork first

24Operating Systems

Model 1

while (true) {

Think ();

wait (mutex);

Eat ();

signal (mutex);

}

 Use one binary semaphore (mutex) to protect
the access to the only resource "the food"

 Cancel concurrency

 Only one philosopher eats at the same time (in
two could eat)

init (mutex, 1);

25Operating Systems

while (true) {

Think ();

wait (chopstick[i]);

wait (chopstick[(i+1)mod5]);

Eat ();

signal (chopstick[i]);

signal (chopstick[(i+1)mod5]);

}

Model 2

init (chopstick[0], 1);

...

init (chopstick[4], 1);

 A semaphore for each chopstick

 It can cause deadlock

i [0, 4]

26Operating Systems

Solution

while (TRUE) {

Think ();

takeForks (i);

Eat ();

putForks (i);

}

 Data structures

 A state for each philosopher (THINKING, HUNGRY,
EATING)

 A semaphore for each philosopher (for access to
food)

 Another semaphore to manage the access in
mutual exclusion to the philosopher state variable

27Operating Systems

takeForks (int i) {

wait (mutex);

state[i] = HUNGRY;

test (i);

signal (mutex);

wait (sem[i]);

}

Solution

int state[N]

init (mutex, 1);

init (sem[0], 0); ...; init (sem[4], 0);

test (int i) {

if (state[i]==HUNGRY && state[LEFT]!=EATING &&

state[RIGHT]!=EATING) {

state[i] = EATING;

signal (sem[i]);

}

}

putForks (int i) {

wait (mutex);

state[i] = THINKING;

test (LEFT);

test (RIGHT);

signal (mutex);

}

