
Deadlock

Definition and modeling
Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

2Operating Systems

Deadlock

 Condition for deadlock

 A P/T requires an unavailable resource, it enters a
waiting state, and it waits forever

 Deadlock consists in

 A set of P/T all awaiting the occurrence of an
event that can only be caused by another process
in the same set

 Deadlock implies starvation, not the opposite

 The starvation of a P/T implies that this P/T waits
indefinitely, but the other P/T can proceed in the
usual way (without being in deadlock)

 All P/T in deadlock are in starvation

3Operating Systems

The Deadlock Problem

 A set of blocked processes each holding a resource and
waiting to acquire a resource held by another process in
the set.

 Example: P1 and P2
 each of them holds a pen drive and

 needs another one.

 Solution with 2 semaphores A and B, initialized to 1

P1 P2

wait (A) wait(B)

wait (B) wait(A)

4Operating Systems

Conditions Description

Mutual exclusion Only one process at a time can use a not sharable
resource

Hold and wait A process holding at least one resource is allowed to
wait for acquiring additional resources held by other
processes

No preemption A resource can be released only voluntarily by the
process holding it, cannot be preempted by the
system.

Circular wait A set of waiting processes {P1, P2, …, Pn} such that
P1 is waiting for a resource that is held by P2,
P2 is waiting for a resource that is held by P3,
…,

and Pn is waiting for a resource that is held by P1

Necessary conditions for occurrence of a deadlock

All must occur
simultaneously to
have a deadlock

Necessary but not sufficient conditions.
They are distinct but not independent (e.g., 4→2)

5Operating Systems

Summary

 Deadlock modeling

 Management strategies

 Ignore

 A posteriori

 Detect

 Recovery

 A priori

 Prevent

 Avoidance

Ignore the problem assuming the probability of a
deadlock in the system is very low
• Method used by many operating systems, including

Windows and Unix
• Less appropriate if concurrency and complexity of the

system increase

In case of possibility of deadlock

In case of deadlock

This section 01

Section 03

Section 02

6Operating Systems

 Resource allocation graph G = (V, E)

 Allows deadlock description and analysis

 The set of vertices V is composed of processes
and resources

 Process set P = {P1, P2, …, Pn}

 Processes are indistinguishable and in an indefinite
number

 Each process accesses a resource via a standard
protocol consisting of

● Request

● Utilization

● Release

Deadlock modeling

7Operating Systems

 System resource set R = {R1, R2, …, Rm}

 The resources are divided into classes (types)

 Each resource type Rj has Wi instances

 All instances of a class are identical: any instance
satisfies a demand for that type of resource

 The set of edges E is composed of

 Request edges

 Pi Rj, i.e., from a process to a resource type

 Assignment edge

 Rj Pi, i.e., from a resource to a process

Modeling

If not, it would be
necessary to

reformulate the
division into classes

8Operating Systems

Vertices: Processes
P1, P2, P3

Vertices: Resources
An instance of R1 and R3

Request edge:
P2 requests for a R3

type resourceAssignment edge:
P1 holds R2

Vertices: Resources
R2 and R4 with 2 and 3 instances, respectively

P1 holds R2

and is
waiting for

R1

Modeling

9Operating Systems

Modeling

 A resource allocation graph can be sometime
simplified in a wait-for graph by

 deleting the resource vertices

 creating the edges between the remaining vertices

 Use and consideration similar to the resource
allocation graph

10Operating Systems

 Sometimes it is useful to extend the resource-
allocation graph to a claim graph by

 adding a claim edge: Pi Rj , indicates that
process Pj can ask resource Rj in the future

 A claim edge is

represented by dashed line

Modeling

11Operating Systems

Detection and recovery techniques

 The system is allowed to enter in a deadlock
state, to then intervene.

 Algorithm in two steps

 Deadlock detection

 The system performs a deadlock detection algorithm

 Recovery from deadlock

 If deadlock has been detected, a recovery action is
performed

12Operating Systems

Detection: strategies

 Given an allocation graph, deadlock can be
detected by checking for cycles

 If the graph contains no cycles, then there is no
deadlock

 If the graph contains one or more cycles then

 Deadlock exist if each type of resource has a single
instance

 Deadlock is possible if the are several instances
per resource type

● The presence of cycles is necessary but not sufficient
condition in the case of multiple instances per
resource type

For multiple instances see the
Banker’s Algorithm

13Operating Systems

Example

 Processes

 P1, P2, P3

 Resources

 R1 and R2 with a single
instance

 A cycle exists

 Deadlock

 P1 waits for P2

 P2 waits for P1

P1

P3

P2

R1

R2

14Operating Systems

Example

 Processes

 P1, P2, P3, P4

 Resources

 R1 and R2 with two
instances

 A cycle exists

 No deadlock

 P2 and P4 can terminate

 P1 can acquire R1 and
terminate

 P3 can acquire R2 and
terminate

15Operating Systems

Example

 Processes

 P1, P2, P3

 Resources

 R1 and R3 with an instance

 R2 with two instances

 R4 with three instances

 Two cycles exist

 Deadlock

 P1 waits for R1

 P2 waits for R3

 P3 waits for R2

16Operating Systems

Detection: costs

 The detection phase has the high computational
cost

 An algorithm to detect a cycle in a graph is required
 The presence of cycles can be verified by a visit in depth

 A graph is acyclic if a visit in depth does not meet arcs
labeled "backward" directed to gray vertices

● If you reach a gray vertex, i.e., you cross a backward arc, you
have a cycle

 The computational cost of this operation is equal to

● Θ(|V|+|E|) for representations with adjacency list

● Θ(|V|2) for representations with adjacency matrix

17Operating Systems

Detection: costs

 When detection is performed?

 Every time a process makes a request not
immediately satisfied

 At fixed time intervals, e.g., every 30 minutes

 At variable intervals of time, e.g., when the CPU
usage falls below a given threshold

18Operating Systems

Recovery

 Different strategies are possible for deadlock
recovery

 Terminate all processes in deadlock

 Terminate a process at a time, among the ones in
deadlock

 Select a victim process, re-check the deadlock
condition, and possibly iterate

 Select a deadlocked process and

 preempt the (some) resources it holds, resource
allocation graph imposing a rollback, re-check the
deadlock condition, and possibly iterate

 Remove specific arcs from the resource allocation
graph to eliminate cycles

 Holding arcs or waiting arcs

19Operating Systems

Strategy Description

Terminate all
deadlocked
processes

• Complexity: low, but easy to cause
inconsistencies on databases

• Cost: much higher than it might be strictly
necessary

Terminate a
process at a
time among
the ones in
deadlock

• Complexity: high, since it is necessary to
select the victims with objective criteria (priority,
current and future execution time, number of
held resources, etc.)

• Cost: high, after each termination must re-
check the deadlock condition

Preempt the
resources of a

deadlocked process
at a time

• Complexity: rollback is necessary to return the
selected process to a safe state

• Cost: the victim process selection must aim at
minimizing the preemption cost

Recovery

20Operating Systems

Strategy Description

Remove
holding arcs
(i.e., specific
resources)

• Complexity: rollback is necessary to return the
selected process to a safe state. The arc must
be properly selected.

• Cost: the victim process selection must aim at
minimizing the preemption cost

• Same as previous strategy

Remove
waiting arcs

• Complexity: The arc must be properly
selected.

• Cost: the victim must manage only the failure
of a resource request (e.g., a malloc that returns
with an error message).

Recovery

Best strategy

21Operating Systems

Conclusions

 Detection and recovery operations are

 logically complex

 computationally expensive

 In any case, if a process requires many
resources, starvation may occur

 The same process is repeatedly chosen as the
victim, incurring repeated rollbacks

 To avoid starvation the victim selection algorithm
should take into account the number of a process
rollbacks

