
UNIX/Linux Operating System

Shells
Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

2Operating Systems

Pgrms

Shell

Unix
kernel

Hw

 The outermost layer of the OS

 It provides the user interface, which interprets the
user commands

 It was the unique interface before the introduction
of graphics servers

 In Unix, a shell is not part of the kernel

 It is a normal user process

 Similar to DOS but

more powerful

 Offers a programming environment

"native of the OS"

Introduction to shells

Users

3Operating Systems

Introduction to shells

 A shell allows

 Submitting commands on command line

 The shell automatically understands when the
command ends and executes it immediately

 Writing shell programs (scripts)

 Storing commands in a script file

 Script execution by submitting the script file

 Writing a script avoids

 Typing complex command sequences repeatedly

 Automating tedious, repetitive and error prone
tasks

4Operating Systems

Main shells

Shell Characteristics

Bourne shell (sh) Original shell, often used in Unix system
programming

C-shell (csh) Berkeley shell, very good for interactive usage,
and for user scripts. Uses a syntax similar to C
language

Korn shell (ksh) Bourne shell rewritten by AT&T to be similar to
C-shell

Tahoe C-shell
(tcsh)

Tahoe project, an improved C-shell (superset)

Bourne again
shell (bash)

Is compatible but extends csh and ksh
Standard GNU Shell; POSIX conformant;
powerful but not complex.
Most sh scripts are interpreted by bash without
changes

List available shells:
cat /etc/shells

5Operating Systems

Introduction to shells

 Different shells may accept slightly different
commands

 Often/bin/sh is a link to the current shell

 The default shell can be modified

 chsh (change login shell)

 Version in use

 /bin/bash -version

 echo $BASH_VERSION

tcsh bash

set myVar = ”ciao” myVar=”ciao”

setenv MY_DIR /home/usr/ export MY_VAR=/home/usr/

if ($str1==$str2) then … else …
endif

if test $str1=$str2 then … else … fi
if [$str1=$str2]; then … else … fi

6Operating Systems

shell execution

 A shell can be activated

 Automatically at login

 Nested within another shell

 As a user program

● /bin/tcsh, /bin/bash, ...

 A shell exit by typing

 Command exit

 The EOF character (usually Ctrl-d)

 Exiting an inner shell will return to the outer shell

7Operating Systems

 At login (and exit) a shell looks for, and executes,
some configuration files that contain initialization
(or termination) commands

 Startup files differ in

 Login files

 Shell is executed after authentication in the system
(password)

 Non-login files

 The shell is executed through an icon or system menu

Introduction to bash

8Operating Systems

 For each login with password, the shell executes

 Global scripts
 /etc/profile

 User scripts (executes the first existing file among)
● ~/.bash_profile

● ~/.bash_login

● ~/.profile

 There is an error in case of incorrect or unreadable
file

Introduction to bash

9Operating Systems

 For each login without a password, the shell
executes

 ~/.bashrc

 This file often refers to ~/.bashrc_profile

 It is also the file typically executed in remote login

 For each logout, the shell executes

 ~/.bash_logout

Introduction to bash

10Operating Systems

shell command expansion

 Some characters have special meaning within the
shell

 bash provide complex substitution mechanisms

 After dividing the command line into tokens, the
shell expands or solves these tokens, i.e., it applies
different types of replacement

 Braces, tilde, variables and parameters, commands,
arithmetic expressions, etc.

 The substitution is complex and takes place with a
specific order

11Operating Systems

Parentheses

 Parentheses (), [], {}

 Enclose variables, arithmetic operations, etc.

 In some cases, they are subject to automatic
expansion (brace expansion)

 name=Jean

 echo $namePaul

 echo {$name}Paul

{Jean}Paul

 echo ${name}Paul

JeanPaul

echo: print command

This variable
does not exist

12Operating Systems

Quoting

 "Quoting" means the use of for quotation marks

 Quotes ' '

 Variables within quotes are not expanded

 They cannot be nested

 Double quotes " "

 Variables within double quotes are expanded

 They can be nested

 Backslash \

 Identifies the escape character, which remove the
special meaning of the character that follows it

13Operating Systems

 myVar="A string"

 echo $myVar

A string

 echo 'v = $myVar'

v = $myVar

 echo "v = $myVar"

v = A string

 echo \$myVar

$myVar

 echo "double quote\""

double quote”

Examples

" … " expansion

' … '

no expansion

\ cancels the meaning

of the next character,
which becomes a
"meta-character"

Variable usage:
- set without $
- used with $

14Operating Systems

Using the output of command

 The standard output of a command can be
captured by

 Enclosing the command in $(...)

 Enclosing the command in backquotes ``

 In particular, the output of a command can be
stored in a variable

out=`cat file.txt`

echo $out

... file content ...

out=`< file.txt`

echo $out

... file content ...

d=$(date)

echo $d

Fri Nov 22 10:00:0 \

CET 2013

d=`date`

...

15Operating Systems

 In a shell, a command can be executed

 Directly
 cd /home ; ls

 Indirectly
 (cd /home; ls)

Command execution

The current shell executes the
command; change directory to

/home; executes ls; at the end the
working directory is /home

The current shell executes the
command in a subprocess; change
directory to /home; executes ls; at
the end the working directory is the

original directory

16Operating Systems

history

 A shell

 Keeps the list of the last submitted commands

 In bash, the list is stored in file .bash_history

● Stored in the user home directory

 Shell commands allow to reference this list

Command Meaning

history Displays the list of the last submitted commands

!n Executes command number n in the history list

!str Executes last command beginning by str

^str1^str2 Executes last command replacing str1 by str2

17Operating Systems

Aliasing

 In shell you can define new names to existing
commands

 The alias command allows defining these names

 alias name="string"

● defines a new alias for "string"

 The shell maintains a list of aliases
 alias

● provides the list of active aliases used in the shell

 Old aliases can be deleted

 unalias name

● Deletes the alias name from the shell

No blanks near symbol =

18Operating Systems

Examples

 alias

alias egrep='egrep --color=auto'

alias emacs='emacs -r -geometry 100x36 -fn 9x15 &'

alias fgrep='fgrep --color=auto'

alias grep='grep --color=auto'

alias ls='ls --color=auto'

alias mx='xdvi -mfmode ljfour:1200'

 alias ll= "ls -la"

 unalias emacs

 unalias ll

Existent aliases

Definition of a new
alias

Deletion of a pre-existing alias
(the eventual command returns

to be what it was)

