
Threads

Pthread library
Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

2Operating Systems

Thread libraries

 It provides the programmer the interface to use
the threads

 The management can be done

 At user-level (by functions)

 At kernel-level (by system calls)

 The most used thread libraries are

 POSIX threads

 Windows 32/64

 Java

Implemented at user
and kernel level

Implemented at
kernel-level

Implemented by means of a thread library
of the system hosting Java (Pthread POSIX

or Windows 32/64)

3Operating Systems

Pthreads

 POSIX threads or Pthreads

 Is the standard UNIX library for threads

 POSIX 1003.1c del 1995

 Revised in IEEE POSIX 1003.1 2004 Edition

 Defined for C language, but available in other
languages (e.g., FORTRAN)

 Using Pthreads

 A thread is a function that is executed in
concurrency with the main thread

A process with multiple threads = a set of independently executing
functions that share the process resources

4Operating Systems

Pthreads

 The Pthreads library allows

 Creating and manipulating threads

 Synchronizing threads

 Protection of resources shared by threads

 Thread scheduling

 Destroying thread

 It defines more than 60 functions

 All functions have a pthread_* prefix

 pthread_equal, pthread_self,

pthread_create, pthread_exit,

pthread_join, pthread_cancel,

pthread_detach

5Operating Systems

Library linkage

 The Pthread system calls are defined in

 pthreads.h

 It is necessary to remember
 To insert in the .c files

 #include <pthread.h>

 Compile your program linking the pthread library

 gcc -Wall -g -o <exeName> <file.c> -lpthread

6Operating Systems

Thread Identifier

 A thread is uniquely identified

 By a type identifier pthread_t

 Similar to the PID of a process (pid_t)

 The type pthread_t is opaque

 Its definition is implementation dependent

 Can be used only by functions specifically defined in
Pthreads

 It is not possible compare directly two identifiers or
print their values

 It has meaning only within the process where the
thread is executed

 Remember that the PID is global within the system

7Operating Systems

pthread_equal() system call

int pthread_equal (

pthread_t tid1,

pthread_t tid2

);

 Compares two thread identifiers

 Arguments

 Two thread identifiers

 Returned values

 Nonzero if the two threads are equal

 Zero otherwise

8Operating Systems

pthread_self() system call

pthread_t pthread_self (

void

);

 Returns the thread identifier of the calling thread

 It can be used by a thread (with pthread_equal)

to self-identify

Self-identification can be important to properly
access the data of a specific thread

9Operating Systems

 At the beginning, a program consists of one
process and one thread

 pthread_create allows creating a new thread

 The maximum number of thread that can be
created is undefined and implementation
dependent

pthread_create() system call

pthread_create()

Initial thread

Initial thread

Created thread

10Operating Systems

pthread_create() system call

 Arguments

 Identifier of the generated thread (tid)

 Thread attributes (attr)

 NULL is the default attribute

 C function executed by the thread
(startRoutine)

 Argument passed to the start routine (arg)

 NULL if no argument

int pthread_create (

pthread_t *tid,

const pthread_attr_t *attr,

void *(*startRoutine)(void *),

void *arg

);

A single argument

11Operating Systems

pthread_create() system call

 Returned values

 0 on success

 Error code on failure

int pthread_create (

pthread_t *tid,

const pthread_attr_t *attr,

void *(*startRoutine)(void *),

void *arg

);

12Operating Systems

pthread_exit() system call

 A whole process (with all its threads) terminates if

 Its thread calls exit (or _exit or _Exit)

 The main thread execute return

 The main thread receives a signal whose action is to
terminate

 A single thread can terminate (without affecting
the other process threads)

 Executing return from its start function

 Executing pthread_exit

 Receiving a cancellation request performed by
another thread using pthread_cancel

13Operating Systems

pthread_exit() system call

void pthread_exit (

void *valuePtr

);

 It allows a thread to terminate returning a
termination status

 Arguments

 The ValuePtr value is kept by the kernel until a
thread calls pthread_join

 This value is available to the thread that calls
pthread_join

14Operating Systems

Example

pthread_t tid;

int rc;

rc = pthread_create (&tid, NULL, tF, NULL);

if (rc) {

// Error ...

exit (-1);

}

...

pthread_exit (NULL);

// exit (0);

// return (0); (in main)

void *tF () {

...

pthread_exit (NULL);

}

Terminates only
the main thread

Terminates the
process

(all its threads)

Attributes Arguments

Thread creation
of 1 thread

without
parameters

15Operating Systems

Example

pthread_t th[NUM_THREADS];

int rc, t;

for (t=0; t<NUM_THREADS; t++) {

rc = pthread_create (&th[t], NULL, tF,

(void *) &t);

if (rc) {...}

}

pthread_exit(NULL);

void *tF (void *par) {

int *tidP, tid;

...

tidP = (int *) par;

tid = *tidP;

...

pthread_exit (NULL);

}

Address of t (pointer

to integer)

Creation of N
threads with 1

argument

Collects the tids

16Operating Systems

Example

pthread_t th[NUM_THREADS];

int rc, t;

for (t=0; t<NUM_THREADS; t++) {

rc = pthread_create (&th[t], NULL, tF,

(void *) &t);

if (rc) {...}

}

pthread_exit(NULL);

void *tF (void *par) {

int *tidP, tid;

...

tidP = (int *) par;

tid = *tidP;

...

pthread_exit (NULL);

}

A thread can be
executed when t is

changed

Creation of N
threads with 1

argument

ERROR
&t is the address of a variable,

the main thread changes its content in
concurrency with the created threads

that read its value

The content is
being modified by
the main thread

17Operating Systems

Example

pthread_t th[NUM_THREADS];

int rc; long int t;

for (t=0; t<NUM_THREADS; t++) {

rc = pthread_create (&th[t], NULL, fF,

(void *) t);

if (rc) { ... }

}

pthread_exit (NULL);

void *tF (void *par) {

long int tid;

...

tid = (long int) par;

...

pthread_exit(NULL);

}

Cast of a value
void * long int

Creation of N
threads with 1

argument

Tricky:
We pass a long int as it were an
address, because pthread_create

requires an address as its last argument

18Operating Systems

Example

int tA[NUM_THREADS];

for (t=0; t<NUM_THREADS; t++) {

tA[t] = t;

rc = pthread_create (&th[t], NULL, tF,

(void *) &tA[t]);

if (rc) { ... }

}

pthread_exit (NULL);

void *tF (void *par) {

int *tid, taskid;

...

tid = (int *) par;

taskid = *tid;

...

pthread_exit(NULL);

}

Cast of a vector of
pointers

void * int

Creation of N
threads with 1

argument

The pointer to a
vector element

19Operating Systems

Example

pthread_t t[NUM_THREADS];

struct tS v[NUM_THREADS];

...

for (t=0; t<NUM_THREADS; t++) {

v[t].tid = t;

strcpy (v[t].str, str);

rc = pthread_create (&t[t], NULL, tF, (void *) &v[t]);

...

}

...

void *tF (void *par) {

struct tS *tD;

int tid; char str[L];

tD = (struct tS *) par;

tid = tD->tid; strcpy (str, tD->str);

...

struct tS {

int tid;

char str[N];

};

Cast to a vector
of structs

Creation of N
threads with 1

struct

Address of a struct

20Operating Systems

pthread_join() system call

 At its creation a thread can be declared

 Joinable

 Another thread may "wait" (pthread_join) for its

termination, and collect its exit status

 Detached

 No thread can explicitly wait for its termination (not
joinable)

21Operating Systems

pthread_join() system call

 If a thread

 is joinable, its termination status is retained until
another thread performs a pthread_join for

that thread

 is detached its termination status is immediately
released

 In any case

 A thread calling pthread_join waits until the
required thread calls phread_exit

22Operating Systems

pthread_join() system call

int pthread_join (

pthread_t tid,

void **valuePtr

);

 Used by a thread to wait the termination of
another thread

Thread 1

pthread_join () pthread_exit ()

Thread 2

23Operating Systems

pthread_join() system call

int pthread_join (

pthread_t tid,

void **valuePtr

);

 Arguments

 Identifier (tid) of the waited-for thread

 The void pointer ValuePtr will obtain the value
returned by thread tid

 Returned by pthread_exit

 Returned by return

 PTHREAD_CANCELED if the thread was deleted

valuePtr can be set to NULL if you
are not interested in the return value

24Operating Systems

pthread_join() system call

int pthread_join (

pthread_t tid,

void **valuePtr

);

 Returned values

 0 on success

 Error code on failure

 If the thread was detached pthread_join should

fail

● Depends on the OS and timing, it may also terminate
correctly

 If it fails, it returns the constant EINVAL or ESRCH

25Operating Systems

Example

void *status;

long int s;

...

/* Wait for threads */

for (t=0; t<NUM_THREADS; t++) {

rc = pthread_join (th[t], &status);

s = (long int) status;

if (rc) { ... }

}

...

void *tF (void *par) {

long int tid;

...

tid = (long int) par;

...

pthread_exit ((void *) tid);

}

Waits each thread,
and collects its exit

status

Returns the exit status
(tid in this example)

th[t] collects the tids

26Operating Systems

Example

int myglobal;

void *threadF (void *arg) {

int *argc = (int *) arg;

int i, j;

for (i=0; i<20; i++) {

j = myglobal;

j = j + 1;

printf ("t");

if (*argc > 1) sleep (1);

myglobal = j;

}

printf ("(T:myglobal=%d)", myglobal);

return NULL;

}

The global variable is
incremented by means

of a copy on j

The thread can sleep
or not

 Use of a global variable common to many threads

27Operating Systems

Example 2

int main (int argc, char *argv[]) {

pthread_t mythread;

int i;

pthread_create (&mythread, NULL, threadF, &argc);

for (i=0; i<20; i++) {

myglobal = myglobal + 1;

printf ("m");

sleep (1);

}

pthread_join (mythread, NULL);

printf ("(M:myglobal=%d)", myglobal);

exit (0);

}

28Operating Systems

Example 2

> ./pgrm

mtttttttttttttttttttt(T:myglobal=21)mmmmmmmmmmmmmmmmmm

m(M:myglobal=40)

If thread executes immediately
No loss of increments

> ./pgrm 1

mttmttmttmttmttmttmttmttmttmttm(T:myglobal=21)mmmmmmmm

m(M:myglobal=30)

2sec waiting for the main thread
Only some increments are lost

> ./pgrm 1

mt(T:myglobal=21)

M:myglobal=21)

Thread and main thread alternates their execution
every second. The increments of the thread are lost

29Operating Systems

pthread_cancel() system call

int pthread_cancel (

pthread_t tid

);

 Terminates the target thread

 The effect is similar to a call to
pthread_exit(PTHREAD_CANCELED)

performed by the target thread

 The thread calling pthread_cancel does not

wait for termination of the target thread (it
continues immediately after the calling)

30Operating Systems

pthread_cancel() system call

int pthread_cancel (

pthread_t tid

);

 Arguments

 Target thread (tid) identifier

 Returned values

 0 on success

 Error code on failure

31Operating Systems

pthread_detach() system call

int pthread_detach (

pthread_t tid

);

 Declares thread tid as detached

 The status information will not be kept by the
kernel at the termination of the thread

 No thread can join with that thread

 Calls to pthread_join should fail with error

code EINVAL or ESRCH

The attribute of the
pthread_create allows

and alternative way to
create a detached thread

32Operating Systems

pthread_detach() system call

int pthread_detach (

pthread_t tid

);

 Arguments

 Thread (tid) identifier

 Returned values

 0 on success

 Error code on failure

33Operating Systems

Example

pthread_t tid;

int rc;

void *status;

rc = pthread_create (&tid, NULL, PrintHello, NULL);

if (rc) { ... }

pthread_detach (tid);

rc = pthread_join (tid, &status);

if (rc) {

// Error

exit (-1);

}

pthread_exit (NULL);

Detach a thread

Error if try to join

 Create a thread and then make it detached

34Operating Systems

Example

pthread_attr_t attr;

void *status;

pthread_attr_init (&attr);

pthread_attr_setdetachstate (&attr,

PTHREAD_CREATE_DETACHED);

//PTHREAD_CREATE_JOINABLE);

rc = pthread_create (&t[t], &attr, tF, NULL);

if (rc) {...}

pthread_attr_destroy (&attr);

rc = pthread_join (thread[t], &status);

if (rc) {

// Error

exit (-1);

}

Creates a detached
thread

Destroys the attribute
object

Error if try to join

 Create a thread using the attribute of the
pthread_create()

35Operating Systems

Exercise

 Implement, using threads, this precedence graph

A

F

C

D

B

G

E

36Operating Systems

Solution

void waitRandomTime (int max){

sleep ((int)(rand() % max) + 1);

}

int main (void) {

pthread_t th_cf, th_e;

void *retval;

srand (getpid());

waitRandomTime (10);

printf ("A\n");

A

F

C

D

B

G

E

37Operating Systems

Solution

waitRandomTime (10);

pthread_create (&th_cf, NULL, CF, NULL);

waitRandomTime (10);

printf ("B\n");

waitRandomTime (10);

pthread_create (&th_e, NULL, E, NULL);

waitRandomTime (10);

printf ("D\n");

pthread_join (th_e, &retval);

pthread_join (th_cf, &retval);

waitRandomTime (10);

printf ("G\n");

return 0;

}

A

F

C

D

B

G

E

38Operating Systems

Solution

static void *CF () {

waitRandomTime (10);

printf ("C\n");

waitRandomTime (10);

printf ("F\n");

return ((void *) 1); // Return code

}

static void *E () {

waitRandomTime (10);

printf ("E\n");

return ((void *) 2); // Return code

}

A

F

C

D

B

G

E

39Operating Systems

Exercise

A

E

C

B

I

F

D

H

G

 Implement, using threads, this precedence graph

40Operating Systems

Exercise

 Given a text file, with an undefined number of
characters, passed as an argument of the
command line

 Implement a concurrent program using three
threads (T1, T2, T3) that process the file content
in pipeline

 T1: Read from file the next character

 T2: Transforms the character read by T1 in
uppercase

 T3: Displays the character produced by T2 on
standard output

41Operating Systems

Solution

 Implement, using threads, this precedence graph

main

main

T2T1 T3

Reading,
transformation, and

visualization in parallel

GET next
UPDATE this
PRINT last

For now, the only
synchronization strategy
is to use pthread_join()

T are created and
destroyed at each

iteration

42Operating Systems

Solution

static void *GET (void *arg) {

char *c = (char *) arg;

*c = fgetc (fg);

return NULL;

}

static void *UPD (void *arg) {

char *c = (char *) arg;

*c = toupper (*c);

return NULL;

}

static void *PRINT (void *arg) {

char *c = (char *) arg;

putchar (*c);

return NULL;

}

43Operating Systems

Solution

FILE *fg;

int main (int argc, char ** argv) {

char next, this, last;

int retC;

pthread_t tGet, tUpd, tPrint;

void *retV;

if ((fg = fopen(argv[1], "r")) == NULL){

perror ("Error fopen\n");

exit (0);

}

this = ' ';

last = ' ';

next = ' ';

44Operating Systems

Solution

while (next != EOF) {

retC = pthread_create (&tGet, NULL, GET, &next);

if (retC != 0) fprintf (stderr, ...);

retC = pthread_create (&tUpd, NULL, UPD, &this);

if (retC != 0) fprintf (stderr, ...);

retC = pthread_create (&tPrint, NULL, PRINT, &last);

if (retcode != 0) fprintf (stderr, ...);

retC = pthread_join (tGet, &retV);

if (retC != 0) fprintf (stderr, ...);

retC = pthread_join (tUpd, &retV);

if (retC != 0) fprintf (stderr, ...);

retC = pthread_join (tPrint, &retV);

if (retC != 0) fprintf (stderr, ...);

last = this;

this = next;

}

The first two characters
can be managed

separately

45Operating Systems

Solution

// Last two chars processing

retC = pthread_create(&tUpd, NULL, UPD, &this);

if (retC!=0) fprintf (stderr, ...);

retC = pthread_create(&tPrint, NULL, PRINT, &last);

if (retC != 0) fprintf (stderr, ...);

retC = pthread_join (tUpd, &retV);

if (retC != 0) fprintf (stderr, ...);

retC = pthread_join (tPrint, &retV);

if (retC != 0) fprintf (stderr, ...);

retC = pthread_create(&tPrint, NULL, PRINT, &this);

if (retC != 0) fprintf (stderr, ...);

return 0;

}

Management of the last
two characters (queue)

46Operating Systems

Exercises

 Some other exercises about threads

 https://www.skenz.it/cs/posix/threads

https://www.skenz.it/cs/posix/threads

