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Hardware solutions

 Hardware solutions to the CS problem can be 
classified as follows:

 Solutions for systems that do not allow 
preemption

 Solutions for systems that allow preemption

 Solutions based on interrupts management

 Solutions based on an "extension" of software 
solutions, or based on

● Some kind of lock

● Some kind of atomic instruction

This aspect is complicated by 
the presence of multiprocessor 

or multi-core systems
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Systems without preemption

 In a system without preemption

 The P (or T) in execution in the CPU cannot be 
interrupted

 The control is released from the P (or T) to the 
kernel only in a voluntary way

The CPU cannot be 
subtracted (preempted) 
from a P (or T), which is 

in the running state



4Operating Systems

Systems without preemption

 In mono-processor systems without 
preemption

 The CS problem does not exist, because only a P 
(or T) can use the only CPU at a certain time, and 
this P (or T) cannot be interrupted

 However, this situation rarely occurs because

 Systems are often multi-processor or multicore, 
and even without preemption the parallelism is 
effective: i.e., distinct processors or cores can 
concurrently execute more than one P (or T)

 Kernels without preemption are not secure, 
have excessive response times, and are not 
suitable for "real-time"
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Systems with preemption

 In a system with preemption

 A running process can be interrupted

 As a matter of fact, the operating system or the 
arrive of an interrupt changes/preempts the 
control flow to another process

 The original process will be terminated later

The CPU can be 
subtracted from a 
running P (or T)
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Using the interrupt mechanism

 In mono-processor system with preemption

 It is possible to solve CS problem with interrupts

 Disable interrupts in the reservation section

 Enable interrupts in the release section

● Used only inside the kernel, and for short sections

● In multi-processor (multi-core) the interrupts must be 
disabled on all processors

while (TRUE) {

disable interrupt

CS

enable interrupt

non critical section 

}

Enabling and disabling 
interrupts are privileged 

instructions
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Using the interrupt mechanism

 In general, disabling interrupts has several 
disadvantages

 The procedure is inherently insecure

 What happens if to a user process is given the right 
to disable interrupts, and that process has an 
incorrect behavior?

 This opportunity can be provided only to kernel level 
processes (super-user)

 In multi-processor (multi-core) systems it is 
necessary to disable the interrupt on all processors

 The interrupt disabling request must be sent

 Long processing times are needed

 System management becomes non real-time
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 An alternative strategy is to simplify the software 
solutions, using locking mechanisms supported 
by the hardware.

 A lock can be uses to protect a CS

 The lock value allows or prohibits access to the CS 

 It must be an indivisible instruction executed 
in a single "memory cycle", which

 Cannot be interrupted

 Allows testing and simultaneous setting of a 
shared variable

Using lock-unlock mechanisms
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 Two main atomic lock instructions exist

 Test-And-Set

 Sets to one and returns the previous value of a 
shared lock variable

 Executed in a single indivisible cycle

 Swap

 Swaps the content of two variables, one of which is 
a shared lock

 Executed in a single indivisible cycle

Using lock-unlock mechanisms
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Test-And-Set

char TestAndSet (char *lock) {

char val;

val = *lock;

*lock = TRUE;

return val;

}

Sets the lock to TRUE,
i.e., locks the CS

Receives, the pointer to the shared lock. 
The lock is of type char or int (but just one 
bit / byte is enough) is initialized to FALSE

Returns the previous value 
of the lock
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while (TRUE) { 

while (TestAndSet (&lock));  // lock

CS 

lock = FALSE;               // unlock

Non critical section

}

char TestAndSet (char *lock) {

char val;

val = *lock;

*lock = TRUE; // Set new lock

return val; // Return old lock

}

Using Test-And-Set instruction

If lock==FALSE
Set lock=TRUE and enter CS

If lock==TRUE
the CS is busy, 

thus waits
Reservation code:

Test and Set

char lock = FALSE; Shared lock variable
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Test-And-Set instruction: disadvantages

while (TRUE) { 

while (TestAndSet (&lock));  // lock

CS 

lock = FALSE;               // unlock

sezione non critica

}

char TestAndSet (char *lock) {

char val;

val = *lock;

*lock = TRUE; // Set new lock

return val; // Return old lock

}

char lock = FALSE;

Busy form of waiting over a 
spin-lock: consumes CPU 

cycles while it waits

TestAndSet must be atomic
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Swap

void swap (char *v1, char *v2) {

char = *tmp;

*tmp = *v1;

*v1 = *v2;

*v2 = *tmp;

return;

}

Performs the atomic exchange 

Receives the pointer to the shared 
lock and to a local lock variable.

The shared lock initialized to FALSE
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Using swap

void swap (char *v1, char *v2) {

char = *tmp;

*tmp = *v1;

*v1 = *v2;

*v2 = *tmp;

return;

}

while (TRUE) { 

key = TRUE;              

while (key==TRUE)

swap (&lock, &key); // Lock

CS 

lock = FALSE;         // Unlock     

non critical section

}

Setting key=TRUE
reserve the CS

If lock==FALSE
the CS is free, set 

key=FALSE,
lock=TRUE, and 

enter the CS

If
lock==TRUE

wait

char lock = FALSE;

Shared lock variable

swap is atomic
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Swap: disadvantages

void swap (char *v1, char *v2) {

char = *tmp;

*tmp = *v1;

*v1 = *v2;

*v2 = *tmp;

return;

}

while (TRUE) { 

key = TRUE;              

while (key==TRUE)

swap (&lock, &key); // Lock

CS 

lock = FALSE;         // Unlock     

non critical section

}

char lock = FALSE;

Busy form of waiting 
over a spin-lock: 

consumes CPU cycles 
while it waits

The swap 
procedure must be 

atomic
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 The previous techniques

 Ensure mutual exclusion

 Ensure progress, avoiding the deadlock

 They do not ensure the definite waiting for a 
process, or they do not guarantee non-starvation

 Are symmetric

 To avoid starvation

 Previous solution must be extended

 The following solution is derived from TestAndSet

 It is due to Burns [1978]

Mutual exclusion without starvation

Slow T/P never enter 
the CS because the 

fast ones keep it busy
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while (TRUE) {

waiting[i] = TRUE;

key = TRUE;

while (waiting[i] && TestAndSet (&lock));

waiting[i] = FALSE;

CS 

j = (i+1) % N;

while ((j!=i) and (waiting[j]==FALSE))

j = (j+1) % N;

if (j==i)

lock = FALSE;

else

waiting[j] = FALSE; 

non critical section

}

Mutual exclusion without starvation

Ti

Single shared lock 
initialized to FALSE

A reservation vector, with an 
element per T/P, initialized to 

FALSE

The T/P in the queue enter 
the SC because they receive 

the entering opportunity 
from the previous one
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while (TRUE) {

waiting[i] = TRUE;

key = TRUE;

while (waiting[i] && TestAndSet (&lock));

waiting[i] = FALSE;

CS

j = (i+1) % N;

while ((j!=i) and (waiting[j]==FALSE))

j = (j+1) % N;

if (j==i)

lock = FALSE;

else

waiting[j] = FALSE; 

non critical section

}

Mutual exclusion without starvation

Ti
Enter the CS if it is free 

lock=FALSE  return TRUE

or waiting[i] has been set to 
FALSE by another T/P

Otherwise yield the lock to a 
waiting T/P by setting 

waiting[j]=FALSE

Releasing the SC set lock= FALSE
if no T/P is waiting
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Conclusions

 Advantages of hardware solutions

 Can be used in multi-processor environments

 Easily extensible to N threads

 Easy to use from the software/user point of view

 Symmetric
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Conclusions

 Disadvantages of hardware solutions

 Not easy to implement at the hardware level

 Need atomic operations on global variables

 Possible starvation

 The selection of processes for entering the CS using 
busy-waiting is arbitrary, and managed by the 
processes and not by the SO

 Busy waiting on spin-lock

 Waste of resources (i.e., CPU cycles) for waiting

● In practice, busy-waiting is used only for very short 
waiting
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Conclusions

 Priority inversion: a higher priority task is preempted 
by a lower priority task.

 Consider two threads H and L, of high and low priority, 
respectively, accessing a resource in mutual exclusion. 

 L is in its CS, H is blocked outside until L exits its CS.

 If a third thread M of medium priority becomes ready, it 
preempts L, thus L does not leave its CS promptly, 
causing H, the highest priority process, to remain 
blocked. 

 A possible solution to this problem is to use the 
priority inheritance protocol

 A process holding a lock automatically inherits the 
priority of the process with the higher priority waiting 
for the same lock


