
The File System

Files in Linux
Stefano Quer and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

2Operating Systems

File System

❖ The file system is one of the most visible aspects
of an OS

❖ It provides mechanisms to save data
(permanently)

❖ It includes management of

➢ Files

➢ Direttories

➢ Disks and disk partitions

3Operating Systems

How is this information
encoded?

I file

❖ Information is store for a long period of time

➢ independently from

▪ Termination of programs/processes, power supply,
etc.

❖ From the logical point of view a file is

➢ A set of correlated information

▪ All information (i.e., numbers, characters, images,
etc.) are stored in a (electronic) device using a
coding system

➢ Contiguous address space

What is the actual
organization of this space?

Files

4Operating Systems

ASCII encoding

❖ De-facto standard

➢ ASCII, American Standard

Code for Information Interchange

▪ Originally based on the English alphabet

▪ 128 characters are coded in 7-bit (binary numbers)

➢ Extended ASCII (or high ASCII)

▪ Extension of ASCII to 8-bit and 255 characters

▪ Several versions exist

● ISO 8859-1 (ISO Latin-1), ISO 8859-2 (Eastern
European languages), ISO 8859-5 for Cyrillic
languages, etc.

128 total characters
32 not printable

96 printable

The alphabet of Klingom
language is not supported

by Extended ASCII

5Operating Systems

Extended ASCII table

6Operating Systems

Unicode encoding

❖ Industrial standard that includes the alphabets for
any existing writing system

➢ It contains more 110,000 characters

➢ It includes more than 100 sets of symbols

❖ Several implementations exist

➢ UCS (Universal Character Set)

➢ UTF (Unicode Tranformation Format)

▪ UTF-8, groups of 8 bits size (1, 2, 3 or 4 groups)

● ASCII coded in the first 8 bits

▪ UTF-16, groups of 16 bits size (1 or 2 groups)

▪ UTF-32, groups of 32 bits size (fixed length)

7Operating Systems

Textual and binary files

❖ A file is basically a sequence of bytes written one
after the other

➢ Each byte includes 8 bits, with possible values 0 or 1

➢ As a consequence all files are binary

❖ Normally we can distinguish between

➢ Textual files (or ASCII)

➢ Binary files C sources, C++,
Java, Perl, etc.

Executables,
Word, Excel, etc.

Remark:
The UNIX/Linux kernel
does not distinguish
between binary and

textual files

8Operating Systems

Textual files (or ASCII)

❖ Files consisting of data encoded in ASCII

➢ Sequence of 0 and 1, which (in groups of 8 bit)
codify ASCII symbols

❖ Textual files are usually “line-oriented”

➢ Newline: go to the next line

▪ UNIX/Linux and Mac OSX

● Newline = 1 character

● Line Feed (go to next line, LF, 1010)

▪ Windows

● Newline = 2 characters

● Line Feed (go to next line, LF, 1010)

+ Carriage Return (go to beginning of the line, CR, 1310)

9Operating Systems

❖ A sequence of 0 and 1, not “byte-oriented”

❖ The smallest unit that can be read/write is the bit

➢ Non easy the management of the single bit

➢ They usually include every possible sequence of 8
bits, which do not necessarily correspond to
printable characters, new-line, etc.

❖ Why are binary files used?

➢ Compactness

▪ Examples

● Number 10000010

● Text/ASCII format: 6 characters, i.e., 6 bytes

● Binary format: coded as integer (short) on 4 bytes

Binary Files

10Operating Systems

“ciao”

‘c’ ‘i’ ‘a’ ‘o’

9910 10510 9710 11110

011000112 011010012 011001002 011011112

“231”

‘2’ ‘3’ ‘1’

5010 5110 4910

001100102 001100112 001100012

“231”

“23110”

111001112

Example

String
Textual or binary file

Integer number
Textual file

Integer number
Binary file

11Operating Systems

❖ Process of translating a structure (e.g., C struct)
into a storable format

➢ Using serialization, a struct can be stored or
transmitted (on the network) as a single entity

➢ When the sequence of bits is read, it is done in
accordance with the serialization process, and the
struct is reconstructed in an identical manner

❖ Many languages support serialization using R/W
operations on a file

Serialization

12Operating Systems

1 100000 Romano Antonio 25

† Romano ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

Antonio ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

??? †?R?o?m?a?n?o???ÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌA?n?t?o?n?i?o???ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ

Example

Text:
Single fields

Characters on 8 bits (ASCII)

Binary:
Serialization

Ctr on 8 bits (ASCII)

Binary:
Serialization

Ctr on 16 bits (UNICODE)
N.B. File dimension

struct mys {

int id;

long int rn;

char n[L], c[L];

int mark;

} s;

13Operating Systems

ISO C Standard Library

❖ I/O operations with ANSI C can be performed
through different categories of functions

➢ Character by character

➢ Row by row

➢ Formatted I/O

➢ Binary I/O

➢ Read examples

▪ https://www.skenz.it/cs/c_language/file_reading_1

➢ Write examples

▪ https://www.skenz.it/cs/c_language/file_writing_1

➢ Binary I/O examples

▪ https://www.skenz.it/cs/c_language/write_and_read
_a_binary_file

https://www.skenz.it/cs/c_language/file_reading_1
https://www.skenz.it/cs/c_language/file_writing_1
https://www.skenz.it/cs/c_language/write_and_read_a_binary_file

14Operating Systems

ISO C Standard Library

❖ Standard I/O is “fully buffered”

➢ The I/O operation is performed only when the I/O
buffer is full

➢ The “flush” operation indicates the actual write of
the buffer to the I/O

#include <stdio.h>

void setbuf (FILE *fp, char *buf);

int fflush (FILE *fp);

Standard error is
never buffered

For concurrent processes, use:
setbuf (stdout, 0);

fflush (stdout);

15Operating Systems

Open and close a file

❖ Access methods

➢ r, rb, w, wb, a, ab r+, r+b, etc.

➢ The UNIX kernel does not make any difference
between textual files (ASCII) and binary files

▪ The “b” option has no effect, e.g. “r”==“rb”,
“w”==“wb”, etc.

#include <stdio.h>

FILE *fopen (char *path, char *type);

FILE *fclose (FILE *fp);

16Operating Systems

I/O character by character

❖ Returned values

➢ A character on success

➢ EOF on error, or when the end of the file is
reached

❖ The function

➢ getchar is equivalent to getc (stdin)

➢ putchar is equivalent to putc (c, stdout)

#include <stdio.h>

int getc (FILE *fp);

int fgetc (FILE *fp);

int putc (int c, FILE *fp);

int fputc (int c, FILE *fp);

17Operating Systems

I/O row by row

❖ Returned values

➢ buf (gets/fgets), or a non-negative value in the
case of success (puts/fputs)

➢ NULL (gets/fgets), or EOF for errors or when the
end of file is reached (puts/fputs)

❖ Lines must be delimited by "new-line"

#include <stdio.h>

char gets (char *buf);

char *fgets (char *buf, int n, FILE *fp);

int puts (char *buf);

int *fputs (char *buf, FILE *fp);

18Operating Systems

Formatted I/O

❖ High flexibility in data manipulation

➢ Formats (characters, integers, reals, etc.)

➢ Conversions

#include <stdio.h>

int scanf (char format, …);

int fscanf (FILE *fp, char format, …);

int printf (char format, …);

int fprintf (FILE *fp, char format, …);

19Operating Systems

Binary I/O

❖ Each I/O operation (single) operates on an
aggregate object of specific size

➢ With getc/putc it would be necessary to iterate on
all the fields of the struct

➢ With gets/puts it is not possible, because both
would terminate on NULL bytes or new-lines

#include <stdio.h>

size_t fread (void *ptr, size_t size,

size_t nObj, FILE *fp);

size_t fwrite (void *ptr, size_t size,

size_t nObj, FILE *fp);

20Operating Systems

Binary I/O

❖ Returned values

➢ Number of objects written/read

➢ If the returned value does not correspond to the
parameter nObj

▪ An error has occurred

▪ The end of file has been reached

#include <stdio.h>

size_t fread (void *ptr, size_t size,

size_t nObj, FILE *fp);

size_t fwrite (void *ptr, size_t size,

size_t nObj, FILE *fp);

ferror and feof can be
used to distinguish

between the two cases

21Operating Systems

Binary I/O

#include <stdio.h>

size_t fread (void *ptr, size_t size,

size_t nObj, FILE *fp);

size_t fwrite (void *ptr, size_t size,

size_t nObj, FILE *fp);

❖ Often used to manage binary files

➢ serialized R/W (single operation for the whole
struct)

➢ Potential problems in managing different
architectures
▪ Data format compatibility (e.g., integers, reals, etc.)

▪ Different offsets for the fields of the struct

22Operating Systems

POSIX Standard Library

❖ I/O in UNIX can be entirely performed with only
5 functions

➢ open, read, write, lseek, close

❖ This type of access

➢ Is part of POSIX and of the Single UNIX
Specification, but not of ISO C

➢ It is normally defined with the term "unbuffered
I/O", in the sense that each read or write
operation corresponds to a system call

23Operating Systems

System call open()

❖ In the UNIX kernel a "file descriptor" is a non-
negative integer

❖ Conventionally (also for shells)

➢ Standard input

▪ 0 = STDIN_FILENO

➢ Standard output

▪ 1 = STDOUT_FILENO

➢ Standard error

▪ 2 = STDERR_FILENO

These descriptors are defined
in the headers file unistd.h

24Operating Systems

System call open()

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open (const char *path, int flags);

int open (const char *path, int flags,

mode_t mode);

❖ It opens a file defining the permissions

❖ Returned values

➢ The descriptor of the file on success

➢ -1 on error

25Operating Systems

System call open()

❖ It can have 2 or 3 parameters

➢ The mode parameter is optional

❖ Path indicates the file to open

❖ Flags has multiple options

➢ Can be obtained with the OR bit-by-bit of
constants defined in the header file fcntl.h

➢ One of the following three constants is mandatory

▪ O_RDONLY open for read-only access

▪ O_WRONLY open for write-only access

▪ O_RDWR open for read-write access

int open (

const char *path,

int flags,

mode_t mode

);

26Operating Systems

System call open()

➢ Optional constants

▪ O_CREAT creates the files if not exist

▪ O_EXCL error if O_CREAT is set and the file
exists

▪ O_TRUNC remove the content of the file

▪ O_APPEND append to the file

▪ O_SYNC each write waits that the physical

write operation is finished

before continuing

▪ ...

int open (

const char *path,

int flags,

mode_t mode

);

27Operating Systems

System call open()

❖ Mode specifies access

permissions

➢ S_I[RWX]USR rwx --- ---

➢ S_I[RWX]GRP --- rwx ---

➢ S_I[RWX]OTH --- --- rwx

int open (

const char *path,

int flags,

mode_t mode

);

When a file is created, actual permissions are
obtained from the umask of the user owner

of the process

28Operating Systems

System call read()

#include <unistd.h>

int read (int fd, void *buf, size_t nbytes);

❖ Read from file fd a number of bytes equal to
nbytes, storing them in buf

❖ Returned values

➢ number of read bytes on success

➢ -1 on error

➢ 0 in the case of EOF

29Operating Systems

System call read()

❖ The returned value is lower that nbytes

➢ If the end of the file is reached before nbytes
bytes have been read

➢ If the pipe you are reading from does not contain
nbytes bytes

#include <unistd.h>

int read (int fd, void *buf, size_t nbytes);

30Operating Systems

System call write()

❖ Write nbytes bytes from buf in the file identified
by descriptor fd

❖ Returned values

➢ The number of written bytes in the case of
success, i.e., normally nbytes

➢ -1 on error

#include <unistd.h>

int write (int fd, void *buf, size_t nbytes);

31Operating Systems

System call write()

#include <unistd.h>

int write (int fd, void *buf, size_t nbytes);

❖ Remark

➢ write writes on the system buffer, not on the disk

▪ fd = open (file, O_WRONLY | O_SYNC);

➢ O_SYNC forces the sync of the buffers, but only
for ext2 file systems

32Operating Systems

Examples: File R/W

float data[10];

if (write(fd, data, 10*sizeof(float))==(-1)) {

fprintf (stderr, "Error: Write %d).\n", n);

}

}

struct {

char name[L];

int n;

float avg;

} item;

if (write(fd,&item,sizeof(item)))==(-1)) {

fprintf (stderr, "Error: Write %d).\n", n);

}

}

Writing of the serialized struct
item (with 3 fields)

writing of the vector data (of
float)

33Operating Systems

System call lseek()

❖ The current position of the file offset is
associated to each file

➢ The system call lseek assigns the value offset to
the file offset

#include <unistd.h>

off_t lseek (int fd, off_t offset, int whence);

34Operating Systems

System call lseek()

❖ whence specifies the interpretation of offset

➢ If whence==SEEK_SET

▪ The offset is evaluated from the beginning of the file

➢ If whence==SEEK_CUR

▪ The offset is evaluated from the current position

➢ If whence==SEEK_END

▪ The offset is evaluated from the end of the file

#include <unistd.h>

off_t lseek (int fd, off_t offset, int whence);

The value of offset
can be positive or

negative

The value of offset
can be positive or

negative

It is possible to leave
"holes" in a file

(filled with zeros)

35Operating Systems

System call lseek()

❖ Returned values

➢ new offset on success

➢ -1 on error

#include <unistd.h>

off_t lseek (int fd, off_t offset, int whence);

36Operating Systems

System call close()

#include <unistd.h>

int close (int fd);

❖ Returned values

➢ 0 on success

➢ -1 on error

❖ All the open files are closed automatically when
the process terminates

37Operating Systems

Example: File R/W

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

#define BUFFSIZE 4096

int main(void) {

int nR, nW, fdR, fdW;

char buf[BUFFSIZE];

fdR = open (argv[1], O_RDONLY);

fdW = open (argv[2], O_WRONLY | O_CREAT | O_TRUNC,

S_IRUSR | S_IWUSR);

if (fdR==(-1) || fdW==(-1)) {

fprintf (stdout, “Error Opening a File.\n“);

exit (1);

}

38Operating Systems

Example : File R/W

while ((nR = read (fdR, buf, BUFFSIZE)) > 0) {

nW = write (fdW, buf, nR);

if (nR!=nW)

fprintf (stderr,

"Error: Read %d, Write %d).\n", nR, nW);

}

if (nR < 0)

fprintf (stderr, "Write Error.\n");

close (fdR);

close (fdW);

exit(0);

}

Error check on the last
reading operation

This program works indifferently on text and
binary files

