
Deadlock

Definition and modeling
Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

2Operating Systems

Deadlock

 Condition for deadlock

 A P/T requires an unavailable resource, it enters a
waiting state, and it waits forever

 Deadlock consists in

 A set of P/T all awaiting the occurrence of an
event that can only be caused by another process
in the same set

 Deadlock implies starvation, not the opposite

 The starvation of a P/T implies that this P/T waits
indefinitely, but the other P/T can proceed in the
usual way (without being in deadlock)

 All P/T in deadlock are in starvation

3Operating Systems

The Deadlock Problem

 A set of blocked processes each holding a resource and
waiting to acquire a resource held by another process in
the set.

 Example: P1 and P2
 each of them holds a pen drive and

 needs another one.

 Solution with 2 semaphores A and B, initialized to 1

P1 P2

wait (A) wait(B)

wait (B) wait(A)

4Operating Systems

Conditions Description

Mutual exclusion Only one process at a time can use a not sharable
resource

Hold and wait A process holding at least one resource is allowed to
wait for acquiring additional resources held by other
processes

No preemption A resource can be released only voluntarily by the
process holding it, cannot be preempted by the
system.

Circular wait A set of waiting processes {P1, P2, …, Pn} such that
P1 is waiting for a resource that is held by P2,
P2 is waiting for a resource that is held by P3,
…,

and Pn is waiting for a resource that is held by P1

Necessary conditions for occurrence of a deadlock

All must occur
simultaneously to
have a deadlock

Necessary but not sufficient conditions.
They are distinct but not independent (e.g., 4→2)

5Operating Systems

Summary

 Deadlock modeling

 Management strategies

 Ignore

 A posteriori

 Detect

 Recovery

 A priori

 Prevent

 Avoidance

Ignore the problem assuming the probability of a
deadlock in the system is very low
• Method used by many operating systems, including

Windows and Unix
• Less appropriate if concurrency and complexity of the

system increase

In case of possibility of deadlock

In case of deadlock

This section 01

Section 03

Section 02

6Operating Systems

 Resource allocation graph G = (V, E)

 Allows deadlock description and analysis

 The set of vertices V is composed of processes
and resources

 Process set P = {P1, P2, …, Pn}

 Processes are indistinguishable and in an indefinite
number

 Each process accesses a resource via a standard
protocol consisting of

● Request

● Utilization

● Release

Deadlock modeling

7Operating Systems

 System resource set R = {R1, R2, …, Rm}

 The resources are divided into classes (types)

 Each resource type Rj has Wi instances

 All instances of a class are identical: any instance
satisfies a demand for that type of resource

 The set of edges E is composed of

 Request edges

 Pi  Rj, i.e., from a process to a resource type

 Assignment edge

 Rj  Pi, i.e., from a resource to a process

Modeling

If not, it would be
necessary to

reformulate the
division into classes

8Operating Systems

Vertices: Processes
P1, P2, P3

Vertices: Resources
An instance of R1 and R3

Request edge:
P2 requests for a R3

type resourceAssignment edge:
P1 holds R2

Vertices: Resources
R2 and R4 with 2 and 3 instances, respectively

P1 holds R2

and is
waiting for

R1

Modeling

9Operating Systems

Modeling

 A resource allocation graph can be sometime
simplified in a wait-for graph by

 deleting the resource vertices

 creating the edges between the remaining vertices

 Use and consideration similar to the resource
allocation graph

10Operating Systems

 Sometimes it is useful to extend the resource-
allocation graph to a claim graph by

 adding a claim edge: Pi Rj , indicates that
process Pj can ask resource Rj in the future

 A claim edge is

represented by dashed line

Modeling

11Operating Systems

Detection and recovery techniques

 The system is allowed to enter in a deadlock
state, to then intervene.

 Algorithm in two steps

 Deadlock detection

 The system performs a deadlock detection algorithm

 Recovery from deadlock

 If deadlock has been detected, a recovery action is
performed

12Operating Systems

Detection: strategies

 Given an allocation graph, deadlock can be
detected by checking for cycles

 If the graph contains no cycles, then there is no
deadlock

 If the graph contains one or more cycles then

 Deadlock exist if each type of resource has a single
instance

 Deadlock is possible if the are several instances
per resource type

● The presence of cycles is necessary but not sufficient
condition in the case of multiple instances per
resource type

For multiple instances see the
Banker’s Algorithm

13Operating Systems

Example

 Processes

 P1, P2, P3

 Resources

 R1 and R2 with a single
instance

 A cycle exists

 Deadlock

 P1 waits for P2

 P2 waits for P1

P1

P3

P2

R1

R2

14Operating Systems

Example

 Processes

 P1, P2, P3, P4

 Resources

 R1 and R2 with two
instances

 A cycle exists

 No deadlock

 P2 and P4 can terminate

 P1 can acquire R1 and
terminate

 P3 can acquire R2 and
terminate

15Operating Systems

Example

 Processes

 P1, P2, P3

 Resources

 R1 and R3 with an instance

 R2 with two instances

 R4 with three instances

 Two cycles exist

 Deadlock

 P1 waits for R1

 P2 waits for R3

 P3 waits for R2

16Operating Systems

Detection: costs

 The detection phase has the high computational
cost

 An algorithm to detect a cycle in a graph is required
 The presence of cycles can be verified by a visit in depth

 A graph is acyclic if a visit in depth does not meet arcs
labeled "backward" directed to gray vertices

● If you reach a gray vertex, i.e., you cross a backward arc, you
have a cycle

 The computational cost of this operation is equal to

● Θ(|V|+|E|) for representations with adjacency list

● Θ(|V|2) for representations with adjacency matrix

17Operating Systems

Detection: costs

 When detection is performed?

 Every time a process makes a request not
immediately satisfied

 At fixed time intervals, e.g., every 30 minutes

 At variable intervals of time, e.g., when the CPU
usage falls below a given threshold

18Operating Systems

Recovery

 Different strategies are possible for deadlock
recovery

 Terminate all processes in deadlock

 Terminate a process at a time, among the ones in
deadlock

 Select a victim process, re-check the deadlock
condition, and possibly iterate

 Select a deadlocked process and

 preempt the (some) resources it holds, resource
allocation graph imposing a rollback, re-check the
deadlock condition, and possibly iterate

 Remove specific arcs from the resource allocation
graph to eliminate cycles

 Holding arcs or waiting arcs

19Operating Systems

Strategy Description

Terminate all
deadlocked
processes

• Complexity: low, but easy to cause
inconsistencies on databases

• Cost: much higher than it might be strictly
necessary

Terminate a
process at a
time among
the ones in
deadlock

• Complexity: high, since it is necessary to
select the victims with objective criteria (priority,
current and future execution time, number of
held resources, etc.)

• Cost: high, after each termination must re-
check the deadlock condition

Preempt the
resources of a

deadlocked process
at a time

• Complexity: rollback is necessary to return the
selected process to a safe state

• Cost: the victim process selection must aim at
minimizing the preemption cost

Recovery

20Operating Systems

Strategy Description

Remove
holding arcs
(i.e., specific
resources)

• Complexity: rollback is necessary to return the
selected process to a safe state. The arc must
be properly selected.

• Cost: the victim process selection must aim at
minimizing the preemption cost

• Same as previous strategy

Remove
waiting arcs

• Complexity: The arc must be properly
selected.

• Cost: the victim must manage only the failure
of a resource request (e.g., a malloc that returns
with an error message).

Recovery

Best strategy

21Operating Systems

Conclusions

 Detection and recovery operations are

 logically complex

 computationally expensive

 In any case, if a process requires many
resources, starvation may occur

 The same process is repeatedly chosen as the
victim, incurring repeated rollbacks

 To avoid starvation the victim selection algorithm
should take into account the number of a process
rollbacks

