
Synchronization

Hardware solutions
Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

2Operating Systems

Hardware solutions

 Hardware solutions to the CS problem can be
classified as follows:

 Solutions for systems that do not allow
preemption

 Solutions for systems that allow preemption

 Solutions based on interrupts management

 Solutions based on an "extension" of software
solutions, or based on

● Some kind of lock

● Some kind of atomic instruction

This aspect is complicated by
the presence of multiprocessor

or multi-core systems

3Operating Systems

Systems without preemption

 In a system without preemption

 The P (or T) in execution in the CPU cannot be
interrupted

 The control is released from the P (or T) to the
kernel only in a voluntary way

The CPU cannot be
subtracted (preempted)
from a P (or T), which is

in the running state

4Operating Systems

Systems without preemption

 In mono-processor systems without
preemption

 The CS problem does not exist, because only a P
(or T) can use the only CPU at a certain time, and
this P (or T) cannot be interrupted

 However, this situation rarely occurs because

 Systems are often multi-processor or multicore,
and even without preemption the parallelism is
effective: i.e., distinct processors or cores can
concurrently execute more than one P (or T)

 Kernels without preemption are not secure,
have excessive response times, and are not
suitable for "real-time"

5Operating Systems

Systems with preemption

 In a system with preemption

 A running process can be interrupted

 As a matter of fact, the operating system or the
arrive of an interrupt changes/preempts the
control flow to another process

 The original process will be terminated later

The CPU can be
subtracted from a
running P (or T)

6Operating Systems

Using the interrupt mechanism

 In mono-processor system with preemption

 It is possible to solve CS problem with interrupts

 Disable interrupts in the reservation section

 Enable interrupts in the release section

● Used only inside the kernel, and for short sections

● In multi-processor (multi-core) the interrupts must be
disabled on all processors

while (TRUE) {

disable interrupt

CS

enable interrupt

non critical section

}

Enabling and disabling
interrupts are privileged

instructions

7Operating Systems

Using the interrupt mechanism

 In general, disabling interrupts has several
disadvantages

 The procedure is inherently insecure

 What happens if to a user process is given the right
to disable interrupts, and that process has an
incorrect behavior?

 This opportunity can be provided only to kernel level
processes (super-user)

 In multi-processor (multi-core) systems it is
necessary to disable the interrupt on all processors

 The interrupt disabling request must be sent

 Long processing times are needed

 System management becomes non real-time

8Operating Systems

 An alternative strategy is to simplify the software
solutions, using locking mechanisms supported
by the hardware.

 A lock can be uses to protect a CS

 The lock value allows or prohibits access to the CS

 It must be an indivisible instruction executed
in a single "memory cycle", which

 Cannot be interrupted

 Allows testing and simultaneous setting of a
shared variable

Using lock-unlock mechanisms

9Operating Systems

 Two main atomic lock instructions exist

 Test-And-Set

 Sets to one and returns the previous value of a
shared lock variable

 Executed in a single indivisible cycle

 Swap

 Swaps the content of two variables, one of which is
a shared lock

 Executed in a single indivisible cycle

Using lock-unlock mechanisms

10Operating Systems

Test-And-Set

char TestAndSet (char *lock) {

char val;

val = *lock;

*lock = TRUE;

return val;

}

Sets the lock to TRUE,
i.e., locks the CS

Receives, the pointer to the shared lock.
The lock is of type char or int (but just one
bit / byte is enough) is initialized to FALSE

Returns the previous value
of the lock

11Operating Systems

while (TRUE) {

while (TestAndSet (&lock)); // lock

CS

lock = FALSE; // unlock

Non critical section

}

char TestAndSet (char *lock) {

char val;

val = *lock;

*lock = TRUE; // Set new lock

return val; // Return old lock

}

Using Test-And-Set instruction

If lock==FALSE
Set lock=TRUE and enter CS

If lock==TRUE
the CS is busy,

thus waits
Reservation code:

Test and Set

char lock = FALSE; Shared lock variable

12Operating Systems

Test-And-Set instruction: disadvantages

while (TRUE) {

while (TestAndSet (&lock)); // lock

CS

lock = FALSE; // unlock

sezione non critica

}

char TestAndSet (char *lock) {

char val;

val = *lock;

*lock = TRUE; // Set new lock

return val; // Return old lock

}

char lock = FALSE;

Busy form of waiting over a
spin-lock: consumes CPU

cycles while it waits

TestAndSet must be atomic

13Operating Systems

Swap

void swap (char *v1, char *v2) {

char = *tmp;

*tmp = *v1;

*v1 = *v2;

*v2 = *tmp;

return;

}

Performs the atomic exchange

Receives the pointer to the shared
lock and to a local lock variable.

The shared lock initialized to FALSE

14Operating Systems

Using swap

void swap (char *v1, char *v2) {

char = *tmp;

*tmp = *v1;

*v1 = *v2;

*v2 = *tmp;

return;

}

while (TRUE) {

key = TRUE;

while (key==TRUE)

swap (&lock, &key); // Lock

CS

lock = FALSE; // Unlock

non critical section

}

Setting key=TRUE
reserve the CS

If lock==FALSE
the CS is free, set

key=FALSE,
lock=TRUE, and

enter the CS

If
lock==TRUE

wait

char lock = FALSE;

Shared lock variable

swap is atomic

15Operating Systems

Swap: disadvantages

void swap (char *v1, char *v2) {

char = *tmp;

*tmp = *v1;

*v1 = *v2;

*v2 = *tmp;

return;

}

while (TRUE) {

key = TRUE;

while (key==TRUE)

swap (&lock, &key); // Lock

CS

lock = FALSE; // Unlock

non critical section

}

char lock = FALSE;

Busy form of waiting
over a spin-lock:

consumes CPU cycles
while it waits

The swap
procedure must be

atomic

16Operating Systems

 The previous techniques

 Ensure mutual exclusion

 Ensure progress, avoiding the deadlock

 They do not ensure the definite waiting for a
process, or they do not guarantee non-starvation

 Are symmetric

 To avoid starvation

 Previous solution must be extended

 The following solution is derived from TestAndSet

 It is due to Burns [1978]

Mutual exclusion without starvation

Slow T/P never enter
the CS because the

fast ones keep it busy

17Operating Systems

while (TRUE) {

waiting[i] = TRUE;

key = TRUE;

while (waiting[i] && TestAndSet (&lock));

waiting[i] = FALSE;

CS

j = (i+1) % N;

while ((j!=i) and (waiting[j]==FALSE))

j = (j+1) % N;

if (j==i)

lock = FALSE;

else

waiting[j] = FALSE;

non critical section

}

Mutual exclusion without starvation

Ti

Single shared lock
initialized to FALSE

A reservation vector, with an
element per T/P, initialized to

FALSE

The T/P in the queue enter
the SC because they receive

the entering opportunity
from the previous one

18Operating Systems

while (TRUE) {

waiting[i] = TRUE;

key = TRUE;

while (waiting[i] && TestAndSet (&lock));

waiting[i] = FALSE;

CS

j = (i+1) % N;

while ((j!=i) and (waiting[j]==FALSE))

j = (j+1) % N;

if (j==i)

lock = FALSE;

else

waiting[j] = FALSE;

non critical section

}

Mutual exclusion without starvation

Ti
Enter the CS if it is free

lock=FALSE return TRUE

or waiting[i] has been set to
FALSE by another T/P

Otherwise yield the lock to a
waiting T/P by setting

waiting[j]=FALSE

Releasing the SC set lock= FALSE
if no T/P is waiting

19Operating Systems

Conclusions

 Advantages of hardware solutions

 Can be used in multi-processor environments

 Easily extensible to N threads

 Easy to use from the software/user point of view

 Symmetric

20Operating Systems

Conclusions

 Disadvantages of hardware solutions

 Not easy to implement at the hardware level

 Need atomic operations on global variables

 Possible starvation

 The selection of processes for entering the CS using
busy-waiting is arbitrary, and managed by the
processes and not by the SO

 Busy waiting on spin-lock

 Waste of resources (i.e., CPU cycles) for waiting

● In practice, busy-waiting is used only for very short
waiting

21Operating Systems

Conclusions

 Priority inversion: a higher priority task is preempted
by a lower priority task.

 Consider two threads H and L, of high and low priority,
respectively, accessing a resource in mutual exclusion.

 L is in its CS, H is blocked outside until L exits its CS.

 If a third thread M of medium priority becomes ready, it
preempts L, thus L does not leave its CS promptly,
causing H, the highest priority process, to remain
blocked.

 A possible solution to this problem is to use the
priority inheritance protocol

 A process holding a lock automatically inherits the
priority of the process with the higher priority waiting
for the same lock

