
Processes

Signals
Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

2Operating Systems

Interrupts

 Interrupt

 Interruption of the current execution due to the
occurrence of an extraordinary event

 It can be caused by

 A hardware device that sends a service request to
the CPU

 A software process that requires the execution of a
particular operation

 For further information on interrupts:
 https://www.skenz.it/listing/os/u04-processes/u04s10-interrupts.pdf

https://www.skenz.it/listing/os/u04-processes/u04s10-interrupts.pdf

3Operating Systems

Definition

 A signal is

 a software interrupt

 i.e., an asynchronous notification sent, by the kernel
or by another process, to a process to notify it of an
event that occurred

 Signals

 Allow notify asynchronous events

 such as the occurrence of particular events (e.g., error
conditions, memory access violations, calculation
errors, illegal instructions, etc.)

 Can be used as a limited form of inter-process
communication

4Operating Systems

Definition

 Examples of common signals

 Termination of a child

 SIGCHLD sent to the parent;

default action = ignore the signal

 Press on the terminal Ctrl-C

 SIGINT sent to the running process (in foreground);

default action = terminate the process

 Invalid memory access

 SIGTSTP sent by the kernel to the process;

default action = suspend the execution

5Operating Systems

Definition

 The system call sleep(t)

 SIGALARM sent after t seconds;

default action = restart the process

 Press on the terminal Ctrl-Z

 SIGTSTP sent to the running process (in foreground)

default action = suspend the execution

 Press on the terminal Ctrl-\

 SIGQUIT sent to the running process (in foreground)

default action = terminate the process and dump core

6Operating Systems

Signals sent by the exception handlers

Exception Exception handler Signal

Divide error divide_error() SIGFPE

Debug debug() SIGTRAP

Breakpoint int3() SIGTRAP

Overflow overflow() SIGSEGV

Bounds check bounds() SIGSEGV

Invalid opcode invalid_op() SIGILL

Segment not present segment_not_present() SIGBUS

Stack segment fault stack_segment() SIGBUS

General protection general_protection() SIGSEGV

Page Fault page_fault() SIGSEGV

Intel-reserved None None

Floating-point error coprocessor_error() SIGFPE

7Operating Systems

Characteristics

 Available from the very first versions of UNIX

 Originally managed in an unreliable way

 They could be lost

● Unix Version 7: a signal could be sent and never
received

 At the reception of each signal the behavior
returned the default one

● The signal handler had to be reloaded

 A process could not ignore the reception of a signal

8Operating Systems

Characteristics

 Standardized by the POSIX standard, they are
now stable and relatively reliable

 Each signal has a name

 Names start with SIG...

 The file signal.h defines signal names

 Unix FreeBSD, Mac OS X and Linux support 31
signals

 Solaris supports 38 signals

9Operating Systems

Main signals

Name Description

SIGABRT Process abort, generated by system call abort

SIGALRM Alarm clock, generated by system call alarm

SIGFPE Floating-Point exception

SIGILL Illegal instruction

SIGKILL Kill (non maskable)

SIGPIPE Write on a pipe with no reader

SIGSEGV Invalid memory segment access

SIGCHLD Child process stopped or exited

SIGUSR1
SIGUSR2

User-defined signal ½
default action = terminate the process
Available for use in user applications

You can display the complete list of signals using the shell
command kill -l

10Operating Systems

Signal management

 Signal management goes through three phases:

signal generation, signal delivery, reaction to a signal

 Signal generation

 When the kernel or a source process causes an
event that generate a signal

 Signal delivery

 A not yet delivered signal remains pending

 At signal delivery a process executes the actions
related to that signal

 The lifetime of a signal is from its generation to its
delivery There is no signal

queue; the kernel sets a
flag in the process table

11Operating Systems

Signal management

 Reaction to a signal

 To properly react to the asynchronous arrival of a
given type of signal, a process must inform the kernel
about the action that it will perform when it will
receive a signal of that type

 A process may

● Accept the default behavior (be terminated)

● Declare to the kernel that it wants to ignore the signals
of that type

● Declare to the kernel that it wants to catch and manage
the signals of that type by means of a signal handler
function (similarly to the interrupt management)

12Operating Systems

Signal Generated
Process Running

Signal Handler

Signal delivered

Signal not blocked

Signal Caught by handler

Return from Signal Handler

Process Resumed

Signal management

Signal managed by
means of a

signal handler

Initial
standard
execution

flow

Resumes
standard
execution

flow

Execution
of the
signal

handler

13Operating Systems

 Signal management can be carried out with the
following system calls

 signal

 Instantiates a signal handler

 kill (and raise)

 Sends a signal

 pause

 Suspends a process, waiting the arrive of a signal

 alarm

 Sends a SIGALARM signal, after a preset time

 sleep

 Suspends the process for a specified amount of time

(waits for signal SIGALRM)

Signal management

The terms signal and kill are
relatively inappropriate.

signal does not send a signal!!

14Operating Systems

signal() system call

 Allow to instantiate a signal handler

 Specifies the signal to be managed (sig)

 The function use to manage it (func), i.e., the
signal handler

#include <signal.h>

void (*signal (int sig,

void (*func)(int)))(int);

Received
parameter

of the signal
handler

Returned
parameter

of the signal
handler

15Operating Systems

signal() system call

 Arguments

 sig indicates the type of signal to be caught

 SIGALRM, SIGUSR1, etc.

 func specifices the address (i.e., pointer) to the
function that will be executed when a signal of
that type is received by the process

 This function has a single argument of int type,

which indicates the type of signal that will be
handled

#include <signal.h>

void (*signal (int sig,

void (*func)(int)))(int);

16Operating Systems

signal() system call

 Returned values

 on success, the previous value of the signal
handler, i.e., the pointer to the previous signal
handler function

 Returns a void *

 SIG_ERR on error, errno is set to indicate the

cause

 #define SIG_ERR ((void (*)()) -1

#include <signal.h>

void (*signal (int sig,

void (*func)(int)))(int);

17Operating Systems

Reaction to a signal

 signal system call allows setting three different
reactions to the delivery of a signal

 Accept the default behavior

 signal (SIGname, SIG_DFL)

 Where SIG_DFL is defined in signal.h

● #define SIG_DFL ((void (*)()) 0

 Every signal has its own default behavior, defined by
the system

 Most of the default reactions is process termination

18Operating Systems

Reaction to a signal

 Ignore signal delivery

 signal (SIGname, SIG_IGN)

 Where SIG_IGN is defined in signal.h

● #define SIG_DFL ((void (*)()) 1

 Applicable to the majority of signals

● Ignoring a signal often leads to an indefinite behavior

 Some signals cannot be ignored

● SIGKILL and SIGSTOP cannot be ignored because

the kernel and the superuser would not have the
possibility to control all processes

● Ignoring an illegal memory access, signaled by
SIGSEGV, would produce an undefined process

behavior

19Operating Systems

Reaction to a signal

 Catch the signal

 signal (SIGname, signalHandlerFunction)

 where

● SIGname indicates the signal type

● signalHandlerFunction is the user defined signal
handler function

 The signal handler

● Can take action considered correct for the
management of the signal

● Is executed asynchronously when the signal is
received

● When it returns, the process continues with the next
instruction, as it happens for interrupts

A signal
handler
function
must be

defined for
every

signal type
that must
be caught

20Operating Systems

#include <signal.h>

#include <stdio.h>

#include <unistd.h>

void manager (int sig) {

printf ("Received signal %d\n", sig);

// signal (SIGINT, manager);

return;

}

int main() {

signal (SIGINT, manager);

while (1) {

printf ("main: Hello!\n");

sleep (1);

}

}

Example 1

Signal handler for
signal SIGINT

Declares the signal
handler

Obsolete versions:
re-instantiate the signal

21Operating Systems

...

void manager (int sig) {

if (sig==SIGUSR1)

printf ("Received SIGUSR1\n");

else if (sig==SIGUSR2)

printf ("Received SIGUSR2\n");

else printf ("Received %d\n", sig);

return;

}

...

int main () {

...

signal (SIGUSR1, manager);

signal (SIGUSR2, manager);

...

}

Example 2

Same signal handler
for more than one

signal type

Both signal types
must be declared

22Operating Systems

Example 3-A

if (fork() == 0) {

// child

i = 2;

sleep (1);

printf (“i=%d PID=%d\n", i, getpid());

exit (i);

} else {

// father

sleep (5);

pid = wait (&code);

printf ("Wait: ret=%d code=%x\n", pid, code);

}

Wait: ret = 3057 code = 200

When a child dies, a SIGCHLD
signal is sent to the parent

Synchronous management
of SIGCHLD (with wait)

23Operating Systems

Example 3-B

signal (SIGCHLD, SIG_IGN);

if (fork() == 0) {

// child

i = 2;

sleep (1);

printf (“i=%d PID=%d\n", i, getpid());

exit (i);

} else {

// father

sleep (5);

pid = wait (&code);

printf ("Wait: ret=%d code=%x\n", pid, code);

}

PID=3057

The execution of a signal(SIGCHLD, SIG_IGN) prevents children
from becoming zombies while a signal(SIGCHLD, SIG_DFL) is not
sufficient for this purpose (even if SIGCHLD is ignored)

Altering the behavior of
wait Ignore SIGCHLD, sent

by the kernel to the
parent at the exit of a
child

No wait:
Wait: ret = -1 code = 7FFFZ

24Operating Systems

Example 3-C

static void sigChld (int signo) {

if (signo == SIGCHLD)

printf("Received SIGCHLD\n");

return;

}

...

signal(SIGCHLD, sigChld);

if (fork() == 0) {

// child

...

exit (i);

} else {

// father

...

}

Asynchronous management
of SIGCHLD

25Operating Systems

kill() system call

 Send signal (sig) to a process or to a group of
processes (pid)

 To send a signal to a process, you must have the
rights

 A user process can send signals only to processes

having the same UID

 The superuser can send signal to any process

#include <signal.h>

int kill (pid_t pid, int sig);

26Operating Systems

kill() system call

#include <signal.h>

int kill (pid_t pid, int sig);

If pid is Send sig

>0 To process with PID equal to pid

==0 To all processes with GID equal to its GID (if it has the
rights)

<0 To all processes with GID equal to the absolute value of
pid (if it has the rights)

==1 To all processes (if it has the rights)

 Arguments

“All process” excludes
a set of system
processes

27Operating Systems

kill system call

 Returned values

 0 on success

 1 on error

#include <signal.h>

int kill (pid_t pid, int sig);

If sig=0 a NULL signal is sent (i.e., no
signal is sent).
This is often used to check if a
process exists: if the kill returns -1 the
process does not exist.

28Operating Systems

raise() system call

 The raise system call allows a process to send a
signal to itself

 raise (sig) is equivalent to

 kill (getpid(), sig)

#include <signal.h>

int raise (int sig);

29Operating Systems

pause() system call

 Suspends the calling process until a signal is
received

 Returns after the completion of the signal
handler

 In this case the function returns -1

#include <unistd.h>

int pause (void);

30Operating Systems

alarm() system call

 Activate a timer (i.e., a count-down)

 The seconds parameter specifies the count-down
value (in seconds)

 At the end of the countdown the signal SIGALRM
is generated

 If SIGALRM is not caught or ignored, the default
action is the process termination

#include <unistd.h>

unsigned int alarm (unsigned int seconds);

31Operating Systems

alarm() system call

 If the system call is executed before the previous
call has originated the corresponding signal, the
count-down restarts from a new value.

 In particular, if seconds is equal to 0 (seconds),
the previous alarm is deactivated

#include <unistd.h>

unsigned int alarm (unsigned int seconds);

32Operating Systems

alarm() system call

 Returned values

 the number of seconds remaining until the delivery
of a previously scheduled alarm

 zero if there was no a previously scheduled alarm

#include <unistd.h>

unsigned int alarm (unsigned int seconds);

33Operating Systems

alarm system call

 Warning

 The signal is generated by the kernel

 It is possible that the process get the CPU control
after some time, depending on the scheduler
decisions

 There is only one time counter for each process,
and system calls sleep and alarm uses the same
kernel timer

#include <unistd.h>

unsigned int alarm (unsigned int seconds);

34Operating Systems

Example

 Implement system call sleep using system calls
alarm and pause

#include <signal.h>

#include <unistd.h>

static void sig_alrm(int signo) {return;}

unsigned int sleep1(unsigned int nsecs)

{

if (signal(SIGALRM, sig_alrm) == SIG_ERR)

return (nsecs);

alarm (nsecs);

pause ();

return (alarm(0));

}
Returns 0, or the remaining time

before the delivery if pause returns

because another signal has been
received

The signal handler
must be instanced
before setting the

alarm

After setting the
alarm the system

waits a signal

35Operating Systems

Example

 Implement system call alarm using system calls
fork, signal, kill and pause

#include <stdio.h>

#include <unistd.h>

#include <signal.h>

void myAlarm (int sig) {

if (sig==SIGALRM)

printf ("Alarm on ...\n");

return;

}

36Operating Systems

Example

int main (void) {

pid_t pid;

(void) signal (SIGALRM, myAlarm);

pid = fork();

switch (pid) {

case -1: /* error */

printf ("fork failed");

exit (1);

case 0: /* child */

sleep(5);

kill (getppid(), SIGALRM);

exit(0);

}

/* parent */

pause ();

exit (0);

}

The child waits
and sends
SIGALRM

The parent pauses, and continues
only when it receives the SIGALRM

sent by the child

37Operating Systems

Signal limitations

 Signals do not convey any information

 The memory of the "pending" signals is limited

 Max one signal pending (sent but not delivered)
per type

 Forthcoming signals of the same type are lost

 Signals can be ignored

 Signals require functions that must be reentrant

 Produce race conditions

 Some limitations are avoided in POSIX.4

38Operating Systems

Limited memory

...

static void sigUsr1 (int);

static void sigUsr2 (int);

static void

sigUsr1 (int signo) {

if (signo == SIGUSR1)

printf("Received SIGUSR1\n");

else

printf("Received wrong SIGNAL\n");

fprintf (stdout, "sigUsr1 sleeping ...\n");

sleep (5);

fprintf (stdout, "... sigUsr1 end sleeping.\n");

return;

}

Program with 2 signal handlers:
sigUsr1 and ...

39Operating Systems

Limited memory

static void

sigUsr2 (int signo) {

if (signo == SIGUSR2)

printf("Received SIGUSR2\n");

else

printf("Received wrong SIGNAL\n");

fprintf (stdout, "sigUsr2 sleeping ...\n");

sleep (5);

fprintf (stdout, "... sigUsr2 end sleeping.\n");

return;

}

Program with 2 signal handlers:
sigUsr1 and sigUsr2

40Operating Systems

Limited memory

int

main (void) {

if (signal(SIGUSR1, sigUsr1) == SIG_ERR) {

fprintf (stderr, "Signal Handler Error.\n");

return (1);

}

if (signal(SIGUSR2, sigUsr2) == SIG_ERR) {

fprintf (stderr, "Signal Handler Error.\n");

return (1);

}

while (1) {

fprintf (stdout, "Before pause.\n");

pause ();

fprintf (stdout, "After pause.\n");

}

return (0);

} The main iterates waiting
signals from shell

41Operating Systems

Limited memory

> ./pgrm &

[3] 2636

> Before pause.

> kill -USR1 2636

> Received SIGUSR1

sigUsr1 sleeping ...

... sigUsr1 end sleeping.

After pause.

Before pause.

> kill -USR2 2636

> Received SIGUSR2

sigUsr2 sleeping ...

... sigUsr2 end sleeping.

After pause.

Before pause.

Correctly received
SIGUSR1

Correctly received
SIGUSR2

Shell commands

Observation:
shell command kill sends a signal to

a process with a specified PID

42Operating Systems

Limited memory

> kill -USR1 2636 ; kill -USR2 2636

> Received SIGUSR2

sigUsr2 sleeping ...

... sigUsr2 end sleeping.

Received SIGUSR1

sigUsr1 sleeping ...

... sigUsr1 end sleeping.

After pause.

Before pause.

Two signals sent in
sequence:

SIGUSR1 and SIGUSR2

Both are received

The deliver order of the two
signal cannot be predicted (it

this case SIGUSR2 arrives first)

43Operating Systems

Limited memory

> kill -USR1 2636 ; kill -USR2 2636 ; kill -USR1 2636

> Received SIGUSR1

sigUsr1 sleeping ...

... sigUsr1 end sleeping.

Received SIGUSR2

sigUsr2 sleeping ...

... sigUsr2 end sleeping.

After pause.

Before pause.

> kill -9 2636

[3]+ Killed ./pgrm

Three signals sent in
sequence: two SIGUSR1 and

one SIGUSR2

A SIGUSR1 is lost

-9 = SIGKILL = Kill
Kill a process

44Operating Systems

Reentrant functions

 A signal has the following behavior:

 The interruption of the current execution flow

 The execution of the signal handler

 The return to the standard execution flow at the
end of the signal handler

 Consequently

 The kernel knows where a signal handler returns,
but

 The signal handler does not know where it was
called, i.e., the control flow was interrupted by the
signal

45Operating Systems

Reentrant functions: Examples

 What happens if the signal handler performs an
operation that is not compatible with the
original execution flow?

 Suppose a malloc is interrupted, and the signal
handler calls another malloc

 Function malloc manages the list of the free memory
regions, which could be corrupted

 Suppose that the execution of a function that uses
a static variable is interrupted, but is then called
by the signal handler

 The static variable could be used to store a new
value, i.e., it does not remain the same it was
before the signal was delivered

46Operating Systems

Reentrant functions: Conclusions

 The "Single UNIX Specification" defines the
reentrant functions, which can be interrupted
without problems

 read, write, sleep, wait, etc.

 Most of the I/O standard C functions are not
reentrant

 printf, scanf, etc.

 They use static variables or global variables

 They must be used carefully and being aware of
possible problems

A call to printf can be interrupted
and give unexpected results

47Operating Systems

Race conditions

 Race condition

 The result of more concurrent processes working
on common data depends on the execution order
of the processes instructions

 Concurrent programming is subject to race
conditions

 Using signals increases the probability of race
conditions.

48Operating Systems

Race conditions example A

 Suppose a process decides to suspend itself for a
given number of seconds

static void

myHandler (int signo) {

...

}

...

signal (SIGALARM, myHandler)

alarm (nSec);

pause ();

See implementation of sleep
using alarm and pause

See implementation of
alarm using fork,

signal, kill and pause

49Operating Systems

Race conditions example A

 Suppose a process decides to suspend itself for a
given number of seconds

 The signal could be delivered before the
execution of pause due to a contest switching
and scheduling decisions (especially in high
loaded systems)

static void

myHandler (int signo) {

...

}

...

signal (SIGALARM, myHandler)

alarm (nSec);

pause ();

pause blocks the process
forever because the signal has

been lost

Signal SIGALRM can be
delivered before pause

50Operating Systems

Race conditions example B

 Suppose two processes P1 and P2 decide to
synchronize by means of signals

 Unfortunately

 If P1 (P2) signal is delivered before P2 (P1) executes
pause

 Process P2 (P1) blocks forever waiting a signal

P2
while (1) {

pause ();

...

kill (pidP1, SIG...);

}

P1
while (1) {

...

kill (pidP2, SIG...);

pause ();

}

51Operating Systems

Exercise

 Despite their defects,
signals can provide a rough
synchronization mechanism

 Ignoring the race
conditions (and using
fork, wait, signal,
kill, and pause)

implement this precedence
graph

S20

S21S11

S23

S24S13

S25

S22

S12

52Operating Systems

Solution

static void

sigUsr (int signo) {

if (signo==SIGUSR1)

printf ("SIGUSR1\n");

else if (signo==SIGUSR2)

printf ("SIGUSR2\n");

else

printf ("Signal %d\n", signo);

return;

}

Definition of the signal handler

53Operating Systems

Solution

int main (void) {

pid_t pid;

if (signal(SIGUSR1, sigUsr) == SIG_ERR) {

printf ("Signal Handler Error.\n");

return (1);

}

if (signal(SIGUSR2, sigUsr) == SIG_ERR) {

printf ("Signal Handler Error.\n");

return (1);

}

Instancing of the signal
handler for signals SIGUSR1

and SIGUSR2

54Operating Systems

Solution

S20

S21S11

S23

S24S13

S25

S22

S12

P1 P2
printf ("S20\n");

pid = fork ();

if (pid > (pid_t) 0) {

P1 (pid);

wait ((int *) 0);

} else {

P2 ();

exit (0);

}

printf ("S25\n");

return (0);

}

P2 is the child. It can
obtain the pid of the
parent with getppid()

P1 is the parent, it
must store the pid

of the child

55Operating Systems

Solution

S20

S21S11

S23

S24S13

S25

S22

S12

P1 P2
void P1 (

pid_t cpid

) {

printf ("S11\n");

sleep (1); // !?

kill (cpid, SIGUSR1);

printf ("S12\n");

pause ();

printf ("S13\n");

return;

}

P1 is the parent, it
must store the pid

of the child

56Operating Systems

Solution

S20

S21S11

S23

S24S13

S25

S22

S12

P1 P2
void P2 (){

if (fork () > 0) {

printf ("S21\n");

pause ();

printf ("S23\n");

kill (getppid (),

SIGUSR2);

wait ((int *) 0);

} else {

printf ("S22\n");

exit (0);

}

printf ("S24\n");

return;

}

P2 is the child. It can
obtain the pid of the
parent with getppid()

