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2Operating Systems

Producer-Consumer

 Producer and consumer with limited memory

 It uses a circular buffer of dimension SIZE to store 
the elements to be produced and consumed

 The circular buffer implements a FIFO queue 
(First-In First-Out)
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Sequential access

#define SIZE ...

...

int queue[SIZE];

int tail, head;

...

void init () {

tail = 0;

head = 0;

n = 0;

}

void dequeue (int *val) {

if (n<=0) return;

*val=queue[head];

head=(head+1)%SIZE;

n--;

return;

}

void enqueue (int val) {

if (n>SIZE) return;

queue[tail] = val;

tail=(tail+1)%SIZE;  

n++;

return;

}

FIFO standard (non ADT)
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Sequential vs parallel access

 In the sequential access enqueue and dequeue
are concurrent

 In parallel access we can have two cases

 Only 1 producer and only 1 consumer

 The operations enqueue and dequeue act on 
different extremes of the queue, however the n 
variable is shared

 P producers and C consumers

 In addition to the previous case, concurrent access 
operations to the same extreme of the queue are 
possible
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Concurrent access: Version 1

 For parallel access with 1 producer and 1 
consumer

 You have to insert

 A semaphore "full" that counts the number of filled 
elements

 A semaphore "empty" that counts the number of 
empty elements

 The counter n can be removed
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#define SIZE ...

...

int queue[SIZE];

int tail, head;

...

void init () {

tail = 0;

head = 0;

}

void dequeue (int *val) {

*val=queue[head];

head=(head+1)%SIZE;

return;

}

void enqueue (int val) {

queue[tail] = val;

tail=(tail+1)%SIZE;  

return;

}

FIFO standard (non ADT)
without the variable n

Concurrent access: Version 1
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Consumer () {

int val;

while (TRUE) {

wait (full);

dequeue (&val);

signal (empty);

consume (val);

}

}

Producer () {

int val;

while (TRUE) {

produce (&val);

wait (empty);

enqueue (val);

signal (full);

}

}

init (full, 0);

init (empty, SIZE);

Instead of n it uses
# elements filled

# elements empty

1 Producer
1 Consumer

Concurrent access: Version 1
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 Solution 1 is simmetric

 The producer produces filled positions

 The consumer produces empty positions

 It can be easily extended to the case where 
there are more producers and more consumers

 Producers and consumers operates on opposite 
extremes of the buffer

 It can be done concurrently

 As long as the queue is not completely full or 
completely empty

 Instead, two producers or two consumers must act 
in mutual exclusion

Concurrent access: Version 2
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Consumer () {

int val;

while (TRUE) {

wait (full);

wait (MEc);

dequeue (&val);

signal (MEc);

signal (empty);

consume (val);

}

}

Producer () {

int val;

while (TRUE) {

produce (&val);

wait (empty);

wait (MEp);

enqueue (val);

signal (MEp);

signal (full);

}

}

init (full, 0);

init (empty, SIZE);

init (MEp, 1);

init (MEc, 1);

P Producers
C Consumers

It is necessary to force mutual 
exclusion between P and C

Concurrent access: Version 2
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Readers & Writers

 Classical problem

 Courtois et al. [1971]

 Share data between two sets of concurrent 
processes

 A set of Readers, which can access concurrently
to the data

 A set of Writers, which can access in mutual 
exclusion, both with other Writers and Readers 
processes, to the data

 Construct often used to create new synchronization 
primitives
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Readers & Writers

 There are two versions of the problem

 Precedence to Readers

 Precedence to Writers

 Common goals

 Respect the precedence protocol

 Maximize concurrency
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Precedence to Readers

 Giving precedence to Readers means

 Privileging Readers access over Writers access, i.e.

 Readers do not have to wait as long as a writer is 
in the CS

 Access protocol

 Readers can concurrently access to the data

 Until the Readers arrive, Writers have to wait

 When even the last Reader ends, then you can 
wake up a writer (or a reader ... it depends on the 
scheduler)
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wait (w);

...

writing

...

signal (w);

wait (meR);

nR++;

if (nR==1)

wait (w);

signal (meR);

...

reading

...

wait (meR);

nR--;

if (nR==0)

signal (w);

signal (meR);

Reader

Precedence to Readers: Version 1

nR = 0;

init (meR, 1);

init (w, 1);

Writer
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wait (meW);

wait (w);

...

writing

...

signal (w);

signal (meW);

wait (meR);

nR++;

if (nR==1)

wait (w);

signal (meR);

...

reading

...

wait (meR);

nR--;

if (nR==0)

signal (w);

signal (meR);

Reader

Precedence to Readers: Version 2

nR = 0;

init (meR, 1);

init (meW, 1);

init (w, 1);

Writer

To enforce the precedence to R 
(the signal(w) unblocks an R)
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Conclusions

 The solution uses

 A global variable (nR) counts the number of 
Readers in the CS

 A semaphore for the mutual exclusion for the 
access to the variable nR (meR)

 A semaphore for the mutual exclusion of more 
Writers, or a Reader and the Writers (w)

 Un semaforo di mutua eslusione per writer (meW)

 Writers are subject to starvation, because they 
can wait (be blocked) forever

 More complex solutions without starvation of the 
Writers are possible
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Precedence to Writers

 Giving priority to writers means

 A Writer that is ready, must wait the smallest 
possible time

 Access protocol

 Each Writer must wait that all Readers finish

 Each Writer has a higher priority than every 
Reader
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wait (meW);

nW++;

if (nW == 1)

wait (r);

signal (meW);

wait (w);

...

writing

...

signal (w)

wait (meW);

nW--;

if (nW == 0)

signal (r);

signal (meW);

wait (r);

wait (meR);

nR++;

if (nR == 1)

wait (w);

signal (meR);

signal (r);

...

reading

...

wait (meR);

nR--;

if (nR == 0)

signal (w);

signal (meR);

Precedence to Writers

Reader Writer

nR = nW = 0;

init (w, 1); init (r, 1);

init (meR, 1); init (meW, 1);
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Conclusions

 The solution uses

 Two global variables (nR and nW) to count the 
number of Readers and Writers

 Two semaphores to guarantee mutual exclusion 
(meR and meW) for the access to the variables nR
and nW

 Two semaphores to guarantee mutual exclusion 
between Readers/Writers (r and w)

 Reader are subject to starvation, because they 
can wait (be blocked) forever

 More complex solutions without starvation are 
possible
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The "Alternate direction tunnel"

 In an alternate direction tunnel

 Allow any number of cars (processes) to proceed 
in the same direction

 If there is traffic in one direction, block traffic in 
the opposite direction
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The "Alternate direction tunnel"

 Extension to the Readers-Writers problem, with 
two sets of Readers

 Data structure

 Two global counters (n1 and n2), one for each 
direction

 Two semaphores (s1 and s2), one for each 
direction

 A global semaphore for wait (busy)

 In its basic implementation, it can cause 
starvation of cars (in one direction with respect 
to the other)
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wait (s2);

n2++;

if (n2 == 1)

wait (busy);

signal (s2);

...

Run (left to right)

...

wait (s2);

n2--;

if (n2 == 0)

signal (busy);

signal (s2);

wait (s1);

n1++;

if (n1 == 1)

wait (busy);

signal (s1);

...

Run (left to right)

...

wait (s1);

n1--;

if (n1 == 0)

signal (busy);

signal (s1);

Solution

left2right right2left

n1 = n2 = 0;

init (s1, 1); init (s2, 1);

init (busy, 1);
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Dining (5) philosophers problem

 Model in which different resources are common 
to different concurrent processes

 Due to Dijkstra [1965]

 Definition of the problem

 A table is set with 

 5 rice dishes

 5 (Chinese) chopsticks each between two plates

 Around the table sit 5 philosophers

 Philosophers think or eat

 To eat each philosopher needs two chopsticks

 Chopsticks can be obtained one at a time
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Model 0

 "Philosophical" solutions (not correct)

 Teach philosophers to eat with only 1 chopstick

 Provide more than 5 chopsticks

 Allow only at most to 4 philosophers to sit at the 
table

 Force asymmetry

 Even position philosophers take 
the left fork first

 Odd position philosophers take 
the right fork first
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Model 1

while (true) {

Think ();

wait (mutex);

Eat ();

signal (mutex);

}

 Use one binary semaphore (mutex) to protect 
the access to the only resource "the food"

 Cancel concurrency

 Only one philosopher eats at the same time (in 
two could eat)

init (mutex, 1);



25Operating Systems

while (true) {

Think ();

wait (chopstick[i]);

wait (chopstick[(i+1)mod5]);

Eat ();

signal (chopstick[i]);

signal (chopstick[(i+1)mod5]);

}

Model 2

init (chopstick[0], 1);

...

init (chopstick[4], 1);

 A semaphore for each chopstick

 It can cause deadlock

i [0, 4]
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Solution

while (TRUE) {

Think ();

takeForks (i);

Eat ();

putForks (i);

}

 Data structures

 A state for each philosopher (THINKING, HUNGRY, 
EATING)

 A semaphore for each philosopher (for access to 
food)

 Another semaphore to manage the access in 
mutual exclusion to the philosopher state variable
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takeForks (int i) {

wait (mutex);

state[i] = HUNGRY;

test (i);

signal (mutex);

wait (sem[i]);

}

Solution

int state[N]

init (mutex, 1);

init (sem[0], 0); ...; init (sem[4], 0);

test (int i) {

if (state[i]==HUNGRY && state[LEFT]!=EATING &&

state[RIGHT]!=EATING) {

state[i] = EATING;

signal (sem[i]);

}

}

putForks (int i) {

wait (mutex);

state[i] = THINKING;

test (LEFT);

test (RIGHT);

signal (mutex);

}


