
Threads

Threads
Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

2Operating Systems

Processes: Characteristics

 A process may execute other processes through

 Cloning (UNIX, fork)

 Replacing the current image with another image
(UNIX, exec)

 explicit call (Windows, CreateProcess)

 A process has

 Its own address space

 A single execution thread (a single program
counter)

3Operating Systems

 Synchronization and data transfer

 No cost or minimal for (almost) independent
processes

 High cost for cooperating processes

 Cloning involves

 A significant increase in the memory used

 Creation time overhead

 Management of multiple processes requires

 Scheduling

 Expensive context switching operations (with kernel
intervention)

Processes: Limits

Standard process = heavyweight process
A task with a single thread of execution

4Operating Systems

 There are several cases where it would be useful
to have

 Lower creation and management costs

 A single address space

 Multiple execution threads (concurrency) within
that address space

 Example

 WEB applications

 A server must responds quickly to many access
requests

 The requests are submitted at the same time, and
require similar processing of the data, etc.

From processes to threads

5Operating Systems

 The 1003.1c POSIX standard introduces the
concept of threads

 The thread model allows a program to control
multiple different flows of operations (scheduled
and executed independently) that overlap in time

 Each flow of operations is referred to as a thread

 Creation and control over these flows is achieved by
making calls to the POSIX Threads API.

 A thread can share its address space with other
threads

From processes to threads

Process = unit that groups resources
Thread = CPU scheduling unit

Thread = hlightweight process

6Operating Systems

From processes to threads

 Shared data

 Code section

 Data section (variables, file descriptors, etc.)

 Operating system resources (e.g., signals)

 i.e., shared data: static variables, external variables,
dynamics variables (heap)

 Private data

 Program counter and hardware registers

 Stack, i.e., local variables and execution history

... with the other threads of the
same process ...

Obvious, since a thread implies
its own flow of execution
(within the same process)

7Operating Systems

From processes to threads

Process

Thread 1

Thread 2

8Operating Systems

A process with a
single thread

A process with three threads
Sharing requires protection !

From processes to threads

9Operating Systems

Threads: Pros

 The use of threads allows

 Shorter response time

 Creating a thread it is 10-100 times faster than
creating a process

 Example

● The creation of 50000 jobs (fork) takes 10 seconds

(real time)

● The creation of 50000 thread (pthread_create)

takes 0.8 seconds (real time)

 Shared resources

 Processes can share data only with special
techniques

 Threads share data automatically

10Operating Systems

Threads: Advantages

 Lower costs for resource management

 Allocate memory to a process is expensive

 Threads use the same section of code and/or data
to serve more clients

 Increased scalability

 The advantages of multi-threaded programming
increase in multi-processor systems

 In multi-core systems (different calculation units per
processor) threads allow easily implementing
concurrent programming paradigms based on

● Task separation (pipelining)

● Data partitioning (same task on data blocks)

11Operating Systems

Threads: Disadvantages

 There is no protection for threads

 They are executed in the same address space and
OS protection is impossible or unnecessary

 If the threads are not synchronized, access to
shared data is not thread safe

 There is not a parent-child hierarchical
relationship between threads

 To the creating thread is normally returned the
identifier of the created thread, but this does not
imply a hierarchical relationship

 All threads are "equal"

12Operating Systems

Concurrency with threads

 Optimize the following code segment that
performs the scalar product of four huge
dimension vectors (v1, v2, v3, v4)

for (i=0; i<n; i++) {

v[i] = v1[i] * v2[i] + v3[i] * v4[i];

}

With processes, data sharing would
be expensive and prevent its use

With threads, data sharing is
automatic and concurrency is

immediate

13Operating Systems

Concurrency with threads

mult (a, b) {

for (i=a; i<b; i++)

v[i] = v1[i] * v2[i] + v3[i] * v4[i];

}

...

CreateThread (mult, 0, n/2);

CreateThread (mult, n/2, n);

Care has to be taken to avoid
• the use of non-reentrant procedures
• the use of non-reentrant library functions
• access to common variables, etc.

Data partition with a divide-and-conquer
strategy

A thread perform its task
on its partition of the data

14Operating Systems

Multithread programming models

 Three multithread programming models exist

 Kernel-level thread

 Thread implemented at kernel-level

 The kernel directly supports the thread concept

 User-level thread

 Thread implemented at user-level

 The kernel is not aware that threads exist

 Mixed or hybrid solution

 The operating system provides both user-level and
kernel threads

The choice is moderately
controversial

15Operating Systems

Kernel-level threads

 Threads are managed by the kernel

 The OS

 Manipulates both processes and threads

 Is aware of the existence of threads

 Provides adequate support for their handling

 All the operations on threads (creation,
synchronization, etc.) are performed through
system calls

16Operating Systems

Kernel-level threads

 The operating system, for each thread, keeps
information similar to those it maintains for each
process

 Thread table

 Thread Control Block (TCB) for each active thread

 Managed information is

"global" within the whole OS

17Operating Systems

Kernel-level threads

 Advantages

 Since the operating system is aware of threads, it
can select

 Thread to schedule among the ready threads of all
processes

● Global view of all threads of all processes

 Possibly allocating more CPU time to processes with
many threads than to processes with few threads

18Operating Systems

Kernel-level threads

 Effectiveness in applications that perform often
blocking calls (e.g., blocking read)

 Ready threads can be scheduled even if they belong
to the same task of a thread that called a blocking
system call

 That is, if one thread blocks, it is always possible to
execute another thread in the same process (or in
another) because the OS checks all the threads of all
the processes

 It allows an effective parallelism

 Multiple threads can be executed in a multiprocessor
system

19Operating Systems

Kernel-level threads

 Disadvantages

 Due to the transition to kernel mode the
management is relatively slow and inefficient

 Expensive context switching

 Handling times hundreds of times slower than
necessary

 Limitation on the maximum number of threads

 The OS must control the number of generated
threads

 Expensive information management (thread table
and TCB)

Already mentioned for processes
(motivation for the introduction of threads)

20Operating Systems

User-level threads

 The thread package is fully implemented in the
user space, as a set of functions

 The kernel is not aware about threads, it
manages only processes

 Threads are managed run-time through a library

 Support by means of a set of functions, called from
user-space

 Thread creation, synchronization, scheduling, etc. do
not require kernel intervention

 Function are used, not system calls

21Operating Systems

User-level threads

 Each process needs a personal table of running
threads

 Needed information is less than the management
at the kernel-level

 Smaller TCBs

 Local visibility of

information

(within the process)

22Operating Systems

User-level threads

 Advantages

 Can be implemented on top of any kernel, even in
systems that do not support threads natively

 Do not require modifications to the OS

 Efficient management

 Fast context switching between threads of the same
task

 Efficient data manipulation

 Hundreds of times faster than kernel threads

 Allow the programmer to generate the desired
number of threads

 It might be possible to think of scheduling/custom
management of threads within each process

23Operating Systems

User-level threads

 Disadvantages

 The operating system does not know the existence
of threads

 Inappropriate or inefficient choices can be made

 The OS could schedule a process whose running
thread could do a blocking operation

 In this case, the whole process could be blocked
even if inside it several other threads could be
executed

24Operating Systems

User-level threads

 Information should be communicated between
kernel and run-time user-level manager

 Without this communication mechanism

 Exist only on running thread for each task even in a
multiprocessor system

 There is no scheduling within a single process, i.e.,
interrupts do not exist within a single process

 If a running thread does not release the CPU, it
cannot be blocked

25Operating Systems

User-level threads

 The scheduler must map user threads to the single
kernel thread

 If the kernel thread blocks, all the user-level threads
are blocked

 There is no true thread-level parallelism without
handling multiple threads at the kernel-level

26Operating Systems

Hybrid implementation

 One of the multi-thread programming problems is
to define the relationship between user-level
threads and kernel-level threads

 Practically all modern OSs have a kernel thread

 Windows, UNIX, Linux, MAC OS X, Solaris

 The basic idea is to have

m user threads and to map

them to n kernel threads

 Typically, n<m

27Operating Systems

Hybrid implementation

 The hybrid implementation attempts to combine
the advantages of both approaches

 The user decides the number of its user-level
threads, and the number of kernel-threads on
which they must be mapped

 The kernel is aware only of

the kernel thread and only

manages those threads

 Each kernel thread can be

used in turn by several

user threads

28Operating Systems

Processes and threads coexistence

 Several problems arise due to the coexistence of
processes and threads

 Using the system call fork

 A fork duplicates only the thread that makes the
call, or all the threads of the process?

 Example

 P has two threads T1 and T2

 T1 is waiting on a read, while T2 performs a fork

 Now we have P and its child, both with T1 waiting
on a read

 Which thread T1 will receive data? Only one?
Which? Both?

29Operating Systems

Processes and threads coexistence

 Using the system call exec

 Does the exec replace only the calling thread with the

new process, or all threads?

 Signal management

 If a process receives a signal which thread will catch it?

 A thread should indicate its interest in handling the signal.
What happens if multiple threads indicate their interest to
catch a signal? Which will handle the signal?

 Some systems provide different versions of the
system call fork

 forkall, duplicates all process threads

 fork1, duplicates only the calling thread

