
Threads

Concurrency: theoretical aspects
Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os


2Operating Systems

Concurrency and parallelism

 Terminology

 Concurrency

 Multiple tasks (two or more) are performed in 
overlapping time intervals, without a specific order

 Task execution seems contemporary (in parallel), 
but it is not

● The effect is due to the CPU time-slicing, i.e., to the 
scheduler (context switching) that dedicates 
infinitesimal time units of the CPU to the various tasks



3Operating Systems

Concurrency and parallelism

 Parallelism

 Multiple tasks (or different parts of the same task) 
are executed in the same time intervals in multi-
processor or multi-core systems

 It is allowed by dedicated hardware structures 
(multi-CPU or multi-core)

 It is obtained by transforming a sequential execution 
flow into a parallel one



4Operating Systems

Concurrency and parallelism

 Concurrency and parallelism do not identify the 
same thing

 Concurrency = manipulate many things at the same 
time

 Parallelism = perform many things at the same time

 These terms are often used with the same meaning

 These two concepts are old

 But, much research has been done since 2004

 In 2004, Intel stopped the development of Tejas and 
Jayhaw processors

● The frequency increase (clock) of the processors has 
reached its limits due to excessive power consumption



5Operating Systems

Concurrency

 Due to the limits of frequency scaling

 Parallel computing is now one of the main 
programming paradigms

 Concurrent programming has introduced new 
challenges and pitfalls (bugs)

Dissipated power

P = C  V2  F

Capacity
(switch)

Voltage Frequency



6Operating Systems

Concurrency and parallelism

 These changes have led to similar changes in the 
used paradigms

 First Moore law (1965)

 The number of transistors in the processors will 
double every 12 months

● 24 months in the 80s

● 18 months in the 90s

 Example

● May 1997, Pentium II, 7.5 millions of transistors, 
fCLOCK = 300 MHz

● November 2000, Pentium 4, 42 millions of transistors, 
fCLOCK = 1.5 GHz



7Operating Systems

Concurrency and parallelism

 Bill Dally law (NVIDIA, 2010, Forbes)

 Following Moore's law no longer makes sense

 We can increase the number of transistors and cores 
by 4 times every 3 years. By making each core 
working slightly more slowly, so more efficiently, we 
can increase performance more than triple, while 
maintaining the same total consumption



8Operating Systems

Parallel architectures

 There are different levels of parallelism

 Bit-level

 Word length determines the efficiency of an 
instruction (e.g., 8 bit versus 16 bit adder)

 Instruction-level

 Use of multi-stage pipelines for the execution of an 
instruction flow (e.g., fetch, decode, execute)

 Task-level

 Different computations are executed in parallel 
(e.g., sorting and matrix product executed in 
parallel) 



9Operating Systems

Parallel architectures

 The first classification for parallel architectures 
was introduced by Flynn (1966)

 Partially outdated

 Many architectures are mixed or not directly 
classifiable

 Still widely used

 Simple and easy to understand

Multiple Instruction 
Single Data

(MISD)

Multiple Instruction
Multiple Data

(MIMD)

Single Instruction
Single Data

(MISD)

Single Instruction
Multiple Data

(SIMD)

Data

Instructions



10Operating Systems

Parallel architectures

 Single Instruction Single Data (SISD)

 Classical scheme

 No parallelism

 Single Instruction Multiple Data (SIMD)

 A single instruction operates on multiple data flows

Process Unit



11Operating Systems

Parallel architectures

 Multiple Instruction Single Data (MISD)

 Multiple instructions operate on a single data flow

 Multiple Instruction Multiple Data (MIMD)

 Multiple instructions operate on a multiple data 
flow



12Operating Systems

Speed-up

 The main purpose of parallelism is to increase 
efficiency

 How do we evaluate efficiency?

 Possible evaluation

 Time

 Memory



13Operating Systems

Speed-up

 There are different metrics for calculating 
execution times

 User time

 Total time that the CPU uses to perform a given task 
at the user-level

● It does not take into account the time "lost" in 
management, e.g., I/O operations, routine execution 
at the kernel level, etc.



14Operating Systems

Speed-up

 CPU time

 Total time dedicated by the CPU to the execution of 
a task

● This time includes I/O times, task management by the 
kernel, etc.

 On a parallel architecture it will be necessary to 
evaluate the time dedicated to the task by all the 
calculation units

● In most cases, this time will be longer than the time 
of the same sequential process running on a single 
processor



15Operating Systems

Speed-up

 Wall-clock time

 Also called elapsed time

 Actual time required to complete a given task

 That is

● Wall clock time = task finish time – task starting time

 This is equivalent to compute the whole execution 
time regardless of whether the execution is carried 
out on single or multi-processor systems

 Taking this metric as a reference

● 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑊𝑎𝑙𝑙−𝑐𝑙𝑜𝑐𝑘 𝑡𝑖𝑚𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

𝑊𝑎𝑙𝑙−𝑐𝑙𝑜𝑐𝑘 𝑡𝑖𝑚𝑒 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚



16Operating Systems

Speed-up

 Doubling the number of processing elements 
should halve the wall-clock time

 Advantages should be linear

 This behavior is obtained

 Rarely

 If a process cannot be parallelized, increasing the 
number of processors/cores does not change the 
run time

 Only for a small number of processors/cores

 After an initial linear dependence, the speed-up 
curve has a horizontal asymptote



17Operating Systems

Amdhal law

 The theoretical advantages obtained by 
concurrency were first analyzed by Amdhal

 The Amdhal law (1967) specifies the theoretical 
improvement obtainable by parallelism

 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
1

𝑆+
1−𝑆

𝑛

n = number of processors or cores

S = percentage of the elapsed time 
for the execution of the sequential 

part of a program (not parallelizable)



18Operating Systems

Amdhal law

 To Ahmdal law should be added the overhead 
related to the management of n threads (or 
processes)

 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
1

𝑆+
1−𝑆

𝑛
+𝐻(𝑛)

 In the most optimistic hypothesis H(n)=0, and 
when the number of processors increases

 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 = lim𝑛→∞
1

𝑆+
1−𝑆

𝑛

=
1

𝑆

H(n) management overhead: 
of the operating system and 
inter-thread synchronization

S = 10% → speedupmax = 10
S = 20% → speedupmax = 5

...
S = 50% → speedupmax = 2

...



19Operating Systems

Amdhal law

 Amdahl law (1967)

 Small program segments intrinsically sequential 
limit the total speed-up that can be obtained



20Operating Systems

Amdhal law

 Corollary to Amdhal law

 Decreasing the serializable part and increasing the 
parallelizable part is more important than 
increasing the number of processors

 Following the Amhdal law, the use of parallelism 
has been subjected to criticism for many years



21Operating Systems

Amdhal law

 Limits of the Amhdal law

 The limits do not only depend on the availability of 
CPU cycles, but also on other factors

 Multi-core systems can have multiple caches for 
lowering memory latency and increasing system 
efficiency

 Some algorithms have better parallel formulations, 
or with a smaller number of execution steps

 Amdahl assumes that the dimension of the problems 
remains constant, while in general the dimension 
increases with the increase of the available 
resources, and what remains constant is the 
execution time 



22Operating Systems

Gustafson law

 In the 1980s, linear speed-ups with 1024 
processors were obtained at Sandia National Labs 
on applications on which Amhdal would have 
expected non-linear behavior

 The Gustafson law (or Barsis equation) expects a 
linear speed-up

 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 = 𝑛 + 1 − 𝑛 ∙ 𝑆

n = number of processors or cores
S = fraction of time in the sequential part



23Operating Systems

Parallelization

 The parallelization of an algorithm can be 
performed only with decomposition

 Task decomposition

 Program decomposition into functions, and analysis 
of which functions can execute in parallel

 Data decomposition

 Decomposition of the problem depending on the 
parallelism applicable to the data, rather than its 
functional/logical nature

 Data flow decomposition

 Decomposition of the problem according to the flow 
of data between the various functions or tasks to be 
completed



24Operating Systems

Parallelization

 The decomposition of a problem can only be 
done by knowing its dependencies

 The precedence constraints can be represented 
with a precedence graph

Relationship with Control Flow Graph (CFG) 
and Process Generation Trees



25Operating Systems

Precedence graph

 A precedence graph is a direct acyclic graph, in 
which

 The vertices correspond to single instructions, 
blocks of instructions, processes

 The arcs correspond to precedence conditions

 An arc from vertex A to vertex B means that task B 
can only be executed after task A has been 
completed

 Precedence can be imposed through 
synchronization techniques

 Synchronization = mechanism used to impose 
constraints on the order of execution of processing 
units (processes or threads)



26Operating Systems

Precedence graph

A1

A2

A3

A4

A5

B1

B2

B3

B4

B5

C1

C2

C3

C4

Process A

Process C Main 
branch

B

D

A

E

G

C

F

Parallel branch to 
the main branch

Concurrent 
processes

Sequential 
processes

Process B


