
Processes

Advanced Control (exec)
Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

2Operating Systems

fork and exec system calls

 System call fork creates a new process
duplicating the calling process.

 There are two main applications of this
mechanism

 Parent and child execute different code sections

 Example: a network server duplicates itself at each
client request, and the child serves the request while
the parent waits for a new client request

 Parent and child execute different code

 Example: a command interpreter (shell)

 Uses the family of exec system calls

● This function is used by many others system call

3Operating Systems

exec system call

 System call exec substitutes the process code
with the executable code of another program

 The new program begins its execution as usual
(from main)

 In particular exec

 Does not create a new process

 Substitutes the calling process image (i.e., its
code, its data, the stack and the heap) with the
image of another program.

 The process PID does not change

 fork duplicates an existent process

 exec executes a new program

4Operating Systems

Code

Process

PCB

Data

Code

Parent

PCB

Data

Code

Child

PCB

Data

New Code

New Process

PCB

New Data

Address space

Fork:
creates new processes

Exec:
executes new programs

5Operating Systems

 6 versions of exec system call

 execl, execlp, execle

 execv, execvp, execve

exec system call

Type Action

l (list) Arguments are a list of strings

v (vector) Arguments is a vector of strings arguments (char
**)

p (path) The executable filename is looked for in the
directories listed in the environment variable PATH

e (environment) The last argument is an environment vector envp[]
which defines a set of new associations strings
name=value

6Operating Systems

exec system call

#include <unistd.h>

int execl (char *path, char *arg0, ..., (char *)0);

int execlp (char *name, char *arg0, ..., (char *)0);

int execle(char *path, char *arg0,..., (char *)0,

char *envp[]);

int execv (char *path, char *argv[]);

int execvp (char *name, char *arg[]);

int execve (char *path, char *arg[], char *envp[]);

 Returned values

 None on success

 -1 on error

7Operating Systems

exec system call

 Arguments

 Pathname of the executable file

 Pathname can specify the name of a file, or the
name of a file with the related path

 In the "p" versions of the exec it is sufficient (and
better) to specify only the name of the file

● If the pathname does not contain a path, it is
inherited by the environment variable PATH (echo
$PATH)

● If the pathname contains a path, the "p" version of
exec is equal to the non-"p" version

 In the non-"p" version the pathname should
include the path (otherwise unknown)

8Operating Systems

exec system call

 Its argument list

 In the "l" versions, exec receives a list of parameters
(like a main in C)

● The first argument is the name of the process

o In practice the string argv[0] of the C syntax

● The other arguments of the list are the arguments for
the executable

o In practice argv[i] with i>0 of the C syntax (i.e., argv[1],

argv[2], etc)

 In the "v" versions the argument is a vector of
pointers to the arguments

● In practice it is a dynamic matrix similar to ** argv

● Similar, not identical, because it is "NULL terminated"

o The value argv[i]==NULL indicates the end of the

arguments

9Operating Systems

exec system call

 The optional environment variables

 In the non- "e" versions, environment variables are
inherited from the calling process

 In the versions "e", environment variables are
explicitly specified

● A second matrix dynamically allocated and NULL-
terminated is passed to the function, which is a vector
of pointers to strings of characters

● These strings specify the values of the desired
environment variables (e.g., variable=value)

10Operating Systems

Examples

execl("/bin/cp","mycp","./file1","./file2",NULL);

execl("/bin/cp","mycp","./file1","./file2",(char*)0);

execl("cp","File_copy","./file1","./file2",(char*)0);

execlp("cp","mycp","./file1","./file2",(char*)0);

whereis cp: /bin/cp User defined name
OK

OK

NO

OK

Alternative
termination

Path is missing

Default path ($PATH)

11Operating Systems

Example

...

n = atoi (argv[1]);

switch (n) {

case 1:

printf(“#1:PID=%d;PPID=%d\n", getpid(), getppid());

sleep (n*10);

execlp ("./pgrm", "./Pgrm", "2", (char *) 0);

break;

case 2:

printf("#2:PID=%d;PPID=%d\n", getpid(), getppid());

sleep (n*10);

execlp ("./pgrm", "myPgrm", "3", (char *) 0);

break;

default:

printf("#3:PID=%d;PPID=%d\n", getpid(), getppid());

sleep (n*10);

break;

}

return (1);

The program (./pgrm) recalls itself
if it receives as parameter 1 or 2

The path is the same
arg0 (its name) changes

12Operating Systems

Example

> ./pgrm 1 &

[2] 2471

#1: PID=2471; PPID=2045

> ps -aux | grep 2471

scanzio 2471 0.0 0.0 4192 352 pts/2 S 19:29 0:00 ./pgrm 1

#2: PID=2471; PPID=2045

> ps -aux | grep 2471

scanzio 2471 0.0 0.0 4192 356 pts/2 S 19:29 0:00 ./Pgrm 2

#3: PID=2471; PPID=2045

> ps -aux | grep 2471

scanzio 2471 0.0 0.0 4192 356 pts/2 S 19:29 0:00 ilMioPgrm 3

[2]+ Exit 1 ./pgrm 1

The PID does not change

Run with n=1

Shell commands (in blue)

The name changes

13Operating Systems

exec system call

 execv[p]

 Uses a single argument: a pointer

 The pointer identifies a vector of pointers to the
parameters (i.e., strings)

 The vector must be properly initialized

char *cmd[] = {

"ls",

"-laR",

".",

(char *) 0

};

...

execv ("/bin/ls", cmd);

Last argument must be the
NULL pointer

14Operating Systems

System call exec ()

 exec[lv]e

 Can provide to the executable a set of
environment variables

 Pointer to a vector of pointers (i.e., strings)

 Without “e” the environment of the new process is
inherited from the calling process

char *env[] = {

"USER=unknown",

"PATH=/tmp",

NULL

};

...

execle (path, arg0, ..., argn, 0, env);

...

execve (path, argv, env);

15Operating Systems

Considerations

 Note that during the exec

 all open file descriptors are mantained (including
stdin, stdout, stderr)

 This allow the process to inherit possible
redirections previously set (e.g., by shell)

 Many kernels

 Implement only system call execve

 The other versions are macros that use this system
call

16Operating Systems

Exercise

 Draw the process generation tree of the following
C code segment

 executed passing as its argument on the command
line string "5"

 What does it display?

 Why?

17Operating Systems

#include <stdio.h>

...

#include <unistd.h>

int main (int argc, char ** argv) {

char str[10];

int n;

n = atoi(argv[1]) - 1;

printf ("%d\n", n);

if (n>0) {

sprintf (str, "%d", n);

execl (argv[0], argv[0], str, NULL);

}

printf ("End!\n");

return 1;

}

Exercise

Run with n=5

18Operating Systems

4

3

2

1

0

End!

Solution

n=4; printf 4

exec

n=3; printf 3

exec

n=2; printf 2

exec

n=1; printf 1

exec

n=0; printf 0

printf End!

P(5)

P(4)

P(3)

P(2)

P(1)

Output

int main (int argc, char ** argv) {

char str[10];

int n;

n = atoi(argv[1]) - 1;

printf ("%d\n", n);

if (n>0) {

sprintf (str, "%d", n);

execl (argv[0], argv[0], str, NULL);

}

printf ("End!\n");

return 1;

}

19Operating Systems

Exercise

 Draw the process generation tree of the following
C code segment

 What does it display?

 Why?

20Operating Systems

#include <stdio.h>

#include <unistd.h>

int main(){

int n;

n=0;

while (n<3 && fork()){

if (!fork())

execlp ("echo", "n++", "n", NULL);

n++;

printf ("%d\n", n);

}

return (1);

}

Exercise

shell command
to print on stdout

fork #1
If 0 we are in the child; the

child ends immediately

fork #2
If 0 we are in the child; the

child does exec

21Operating Systems

1

2

3

n

n

n

Solution

Output

P

P
C1

exec; echo nn=1; printf 1

P C2

exec; echo nn=2; printf 2

P C3

n=0

n=1

exec; echo nn=3; printf 3

n=2

n=3

fork #1 in the while
condition is true only for the

parent, thus it continues,
whereas the child exits

stop

Which
order?

fork #2

22Operating Systems

UNIX shell skeleton

 Command run in foreground

 <command>

while (TRUE) {

write_prompt;

read_command (command, parameters);

if (fork() == 0)

/* Child: Execute command */

execve (command, parameters);

else

/* Parent: Wait child */

wait (&status);

}

23Operating Systems

UNIX shell skeleton

 Command run in background

 <command> &

while (TRUE) {

write_prompt;

read_command (command, parameters);

if (fork() == 0)

/* Child: Execute command */

execve (command, parameters);

/* else */

/* Parent: DOES NOT wait */

/* wait (&status); */

}

24Operating Systems

Command execution

 It can be useful to execute a shell command
from a process

 For example for appending a date or a hour to a
filename or to a file

 System call system solves this problem

 Defined in the standard ISO C and POSIX

 Although defined by the C standard, it is highly
implementation-dependent

 It is always present in UNIX-like systems

25Operating Systems

system() system call

#include <stdlib.h>

int system (const char *string);
Since it is implemented
with fork, exec and wait
has different termination

conditions System call system()

 Forks a shell, which execute the string command,
while the parent process waits the termination of
the shell command

 Returned values

 -1 if fork or waitpid fail (used in its implementation)

 127 if the exec fails (used in its implementation)

 The exit value of the shell that executed the
command (with the format of waitpid)

26Operating Systems

Example

...

system ("date");

...

system ("date > file");

char str[L];

...

strcpy (str, "ls -la");

system (str);

...

...

system ("ls -laR");

...

Redirection...
see section u04s07

27Operating Systems

system() implementation

 In initial LINUX versions

 system was implemented by means of

 fork, exec and wait

 They were inefficient due to polling

 while ((lastpid=wait(&status)) != pid &&
lastpid!=-1);

 Current versions

 usually use the system calls fork, exec and waitpid

28Operating Systems

system() implementation

int system (const char *cmd) {

pid_t pid;

int status;

if (cmd == NULL)

return(1);

if ((pid = fork()) < 0) {

status = -1;

} else if (pid == 0) {

execl("/bin/sh", "sh", "-c", cmd, (char *) 0);

_exit(127);

} else {

while (waitpid (pid, &status, 0) < 0)

if (errno != EINTR) {

status = -1;

break;

}

}

return(status);

}

Error in fork

The shell must read
from the command
line, not from stdin

Options:
WNOHANGInterrupted

function call

29Operating Systems

Exercise

 Draw the process generation tree of the following
C program

 executed passing as its argument on the command
line string "4"

 What does it display?

 Why?

30Operating Systems

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int main(int argc, char ** argv){

int n;

char str[10];

n = atoi (argv[1]);

if (n>0) {

printf ("%d\n", n);

sprintf (str, "%s %d", argv[0], n-1);

system (str);

}

printf("End!\n");

return (1);

}

Exercise

Run with n=4

31Operating Systems

4

3

2

1

End!

End!

End!

End!

End!

Solution

Output

printf 4

system

printf 3

system

printf 2

system

printf 1

system

printf End!

printf End!

printf End!

printf End!

printf End!

P(4)

P(3)

P(2)

P(1)

P(0)

32Operating Systems

Exercise

 Draw the process generation tree of the following
C code segment

 What does it display?

 Why?

33Operating Systems

#include ...

int main () {

char str[100];

int i;

for (i=0; i<2; i++){

if (fork()!=0) {

sprintf (str, "echo system with i=%d", i);

system (str);

} else {

if (fork()==0) {

sprintf (str, "exec with i=%d", i);

execlp ("echo", "myPgrm", str, NULL);

}

}

}

return (0);

}

Exercise

34Operating Systems

Exercise

P

P

P C1

C2

C2

C21

C11

C1

1

2

2

1

C121

C12

2

i=0

i=2

i=1 1

C12

echo system with i=%d

exec echo with i=%d

Output

Which
order?

system with i=0

system with i=1

exec with i=1

exec with i=0

system with i=1

exec with i=1

