
UNIX/Linux environment

C programming tools
Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

2Operating Systems

IDE

❖ Integrated Development Environment (IDE)

❖ Some "free" IDEs are:

➢ Netbeans

▪ C, C++

▪ https://www.netbeans.org/

➢ Code::Blocks

▪ C, C++, Fortran

▪ http://www.codeblocks.org/

http://www.codeblocks.org/

3Operating Systems

IDE

➢ Eclipse

▪ Java, C++, etc.

▪ http://www.eclipse.org/

➢ CodeLite

➢ Geany

▪ Very simple, few plug-ins

➢ MonoDevelop

➢ Anjuta

http://www.eclipse.org/

4Operating Systems

Editor

❖ Editors typically used in UNIX/Linux

➢ Sublime

➢ Atom

➢ Vim (Vi)

➢ Emacs

➢ Gedit

➢ Nano

➢ Brackets

➢ Bluefish

➢ Spacemacs

5Operating Systems

Editor: Vim (Vi)

❖ Text editor

➢ Present in all BSD and Unix systems (and also in
embed systems)

➢ Developed since 1976

➢ Last version (8.1) in 2018

❖ Base version (Vi)

➢ Is not functional for extensive file editing

➢ Very useful if other editors cannot be used, or give
some problem

▪ e.g., remote editing

6Operating Systems

Editor: Vim (Vi)

❖ Expanded and improved over time

➢ Vim = VI Improved

➢ In the newer versions can be used for editing large
projects

▪ Multi-level undo, multi-window, multi-buffer, etc

▪ On-line help, syntax highlighting, etc.

❖ Together with emacs, it is one of the
protagonists of the "war of the editors"

❖ Extensions allow to increase editor features

7Operating Systems

Editor: Vim (Vi)

❖ Run with the command

➢ vi filename

❖ It provides different operating modes

➢ Command Mode

▪ Cursor positioned in the text

▪ The keyboard is used to issue commands

➢ Input Mode

▪ Text insertion mode

▪ The keyboard is used to insert the text

➢ Directive Mode

▪ Cursor positioned on the last line of the video

▪ The keyboard is used for control directives

8Operating Systems

Command Mode Command

Cursor movements ←,↑,→,↓ (h, j, k, l)

Insert Mode (from the cursor) i

Insert Mode (at the beginning of the line) I

Append Mode (from the cursor) a

Append Mode (at the end of the line) A

Overwrite Mode R

Pass (return) to Command Mode esc (key)

Delete a row dd

Delete a single character x

Documentation
Local help : man vim
Online resources: http://www.vim.org/docs.php
Resources in PDF: ftp://ftp.vim.org/pub/vim/doc/book/vimbook-OPL.pdf

Editor: Vim (Vi)

Also
0-g
n-g

Also
n-dd
n-x

ftp://ftp.vim.org/pub/vim/doc/book/vimbook-OPL.pdf

9Operating Systems

Command Mode (continue) Command

Insert last deletion P

Delete a character X

Cancel the last operation (undo) U

Restore the last change (redo) Ctrl-r

Editor: Vim (Vi)

Directive Mode Command

Pass to Directive Mode (last line) :

Show line numbers :set num

Save the file :w!, :w fileName

Exit without saving the latest changes :q!

Enter the on-line help :help

Learn Vim (from Google): Vim Adventures https://vim-adventures.com/

https://vim-adventures.com/

10Operating Systems

Editor: emacs

❖ Free text editor

➢ Emacs = Editor MACroS

➢ Developed since 1976

➢ Last version (26.2) in 2019

➢ Initially developed by Richard Stallman
https://en.wikipedia.org/wiki/Richard_Stallman

❖ Preferred by many advanced programmers:
powerful, extensible, flexible

❖ Various versions, but the most popular are

➢ GNU Emacs

➢ Xemacs = next generation Emacs

https://en.wikipedia.org/wiki/Richard_Stallman

11Operating Systems

Editor: emacs

❖ Available for

➢ GNU, GNU/Linux

➢ FreeBSDm, NetBSD, OpenBSD

➢ Mac OS X

➢ MS Windows

12Operating Systems

Editor: emacs

❖ Advantages

➢ Many features, more powerful than the simple text
editor

➢ Fully customizable

➢ Fast execution of complex operations

❖ Disadvantages

➢ Slow learning curve

13Operating Systems

❖ Base commands available through

➢ Menu

➢ Character sequences

▪ Control commands: control + character (c-key)

▪ Meta commands: alt + character (m-key)

Editor: emacs

Documentation
Local help : man emacs
Online resources : http://www.gnu.org/software/emacs/manual/emacs.html
Resources in PDF: http://www.gnu.org/software/emacs/maanual/pdf/emacs.pdf

http://www.gnu.org/software/emacs/manual/emacs.html
ftp://ftp.vim.org/pub/vim/doc/book/vimbook-OPL.pdf

14Operating Systems

Compiler and Debugger

❖ Compiler

➢ GCC

➢ G++

➢ Makefile

➢ Configure

❖ Debugger

➢ GDB

15Operating Systems

Compiler: gcc

❖ Open-Source GNU project

➢ gcc compiler and linker

➢ Supports C and C++

❖ Command syntax

➢ gcc <options> <arguments>

▪ Options: list of flags that control the compiler and
the linker; there are options for compilation only, for
linker only, or both

▪ Arguments: list of files that gcc reads and process
depending on the given options

Documentation
Local help : man gcc
Online resources : http://www.gnu.org

http://www.gnu.org/

16Operating Systems

Examples

❖ Compilation of a set of files that produces the
corresponding object files

▪ gcc –c file1.c

▪ gcc –c file2.c

▪ gcc –c main.c

❖ Link of the object files produces the executable
file

▪ gcc –o myexe file1.o file2.o main.o

❖ Compilation and linking with a single command

▪ gcc –o myexe file1.c file2.c main.c

17Operating Systems

gcc options

❖ Most common options

➢ -c file

▪ Compilation only

➢ -o file

▪ Specifies the executable name; generally indicates
the name of the final executable (after the link
operation)

➢ -g

▪ gcc does not produce optimized code, but inserts
additional information useful for debugging (see
gdb)

➢ -Wall

▪ Output a warning for all possible code errors

18Operating Systems

gcc options

➢ -Idir

▪ Specify further directories where searching header
files

▪ More than one directory can be specified (-Idir1 –
Idir2 …)

➢ -lm

▪ Specifies to use the math library

➢ -Ldir

▪ Specifies the search directories for pre-existing
libraries to be linked

Do not insert spaces

19Operating Systems

Example 1

❖ Compilation of many source files, followed by
linking and creation of the executable file

➢ Multi-row command

➢ Provides “All Warnings”

➢ Debug option (i.e., do not optimize code9

➢ Find the header files in two directories

➢ Links the math library

gcc –Wall –g –I. –I/myDir/subDir –o myexe \

myMain.c \

fileLib1.c fileLib2.c file1.c \

file2.c file3.c -lm

20Operating Systems

Makefile

❖ Support tools for the development of complex
projects

❖ Developed since 1998

❖ Made up of utilities

➢ Makefile

➢ Make

❖ Provides a convenient tool to automate the
compilation and linker steps

❖ Help

➢ man make

First scripting
language used in
this course

Extremely flexible
instrument, but its main
strength is the verification
of dependencies

21Operating Systems

Makefile

❖ Makefile has two main aims

➢ Automatically perform repetitive tasks

➢ Avoid (re)doing unnecessary tasks

▪ by verifying the file dependencies and
modification times (e.g., re-compile only the
files that have been modified since the previous
make command)

❖ Two phases

➢ Write a Makefile file

▪ A text file similar to a script (shell script or other)

➢ The Makefile file is interpreted with the make
utility

▪ This way you can compile and link

22Operating Systems

Make options

❖ Make can be executed using different options

➢ Does not execute, just displays the commands

▪ -n

➢ Ignores possible errors and proceeds with the next
commands

▪ -i, --ignore-errors

➢ Output debug information during the execution

▪ -d

➢ --debug=[options]

▪ Options: a = print all info, b = basic info, v =
verbose = basic + other, i = implicit = verbose +
other

23Operating Systems

❖ The command make can take as argument a
source file (Makefile), with name different than
standard ones

➢ The make command executes by default

▪ the file makefile if it exists

▪ Or the file Makefile if the file makefile does not exist

➢ -f <fileName> (or --file <fileName>)

▪ Allows you to execute the Makefile with name
<fileName>

▪ make --file <fileName>

▪ make --file=<fileName>

▪ make -f <fileName>

Makefile options

24Operating Systems

Makefile format

❖ A Makefile includes

➢ Empty lines

▪ They are ignored

➢ Lines starting with "#"

▪ They are comments, and consequently ignored

➢ Lines that specify rules

▪ Each rule specifies a target, some dependencies,
and actions; it can occupy one or more lines

▪ Very long lines can be splitted by inserting the "\"
character at the end of the line

target: dependency

<tab>command

Tabulation character

25Operating Systems

Makefile format

❖ When a Makefile is executed (with the command
make)

➢ The default behavior is to execute the first rule

▪ i.e., the first target in the file

➢ If more targets are specified, the desired target
can be passed as an argument to make
▪ make <targetName>

▪ make –f <myMakefile> <targetName>

target: dependency

<tab>command

26Operating Systems

❖ A makefile consists of "rules" like this:

❖ Each rule includes

➢ Target Name

▪ Usually the name of a file

▪ Sometimes the name of an action (which is named
"phony" target)

➢ dependency list that must be verified to execute
the target

➢ Command, or list of commands

▪ Each command is preceded by a mandatory TAB
character, invisible but necessary

target: dependency

<tab>command

Makefile format

27Operating Systems

Example 1: Single target

❖ Specifies

➢ A single target with name target

➢ The target does not have dependencies

❖ Executing the Makefile

➢ The target is executed

➢ Since the target does not have dependencies, the
execution of the target corresponds to the
execution of the compilation command

target:

<tab>gcc –Wall –o myExe main.c -lm

Notice: TAB

28Operating Systems

Example 2: Multiple targets

❖ The Makefile specifies more rules

➢ Need to choose which is the target to execute

➢ The default consists in the execution of the first
target

❖ Executing the command

➢ make

▪ The target project1 is executed

➢ make -f project2

▪ The target project2 is executed

project1:

<tab>gcc –Wall –o project1 myFile1.c

project2:

<tab>gcc –Wall –o project2 myFile2.c

29Operating Systems

Example 3: Multiple targets and actions

❖ Specify more rules

➢ Rules have no dependencies

➢ The first target executes two commands (gcc and
cp)

▪ This first target is executed with the commands

● make

● make -f target

target:

<tab>gcc –Wall –o my \

<tab> main.c \

<tab> bst.c list.c queue.c stack.c

<tab>cp my /home/myuser/bin

clean:

<tab>rm –rf *.o *.txt

Command on
more rows

30Operating Systems

Example 3: Multiple targets and actions

➢ The second target removes all the files with
extension .o and all the files with extension .txt

▪ This second target is executed with the command

● make -f clean

target:

<tab>gcc –Wall –o my \

<tab> main.c \

<tab> bst.c list.c queue.c stack.c

<tab>cp my /home/myuser/bin

clean:

<tab>rm –rf *.o *.txt

Command on
more rows

31Operating Systems

Example 4: dependencies

❖ Execution of multiple targets in the presence of
dependencies

➢ It checks if target dependencies are more recent
than the current target

➢ In this case, dependencies are performed before
the execution of the current target

➢ This process iterates recursively

target: file1.o file2.o

<tab>gcc –Wall –o myExe file1.o file2.o

file1.o: file1.c myLib1.h

<tab>gcc –Wall –g –I./dirI –c file1.c

file2.o: file2.c myLib1.h myLIb2.h

<tab>gcc –Wall –g –I./dirI –c file2.c

32Operating Systems

Example 4: dependencies

❖ Target has file1.o and file2.o as dependencies

➢ rule file1.o is checked

▪ If file1.c (or myLib1.h) is more recent than file1.o,
this rule (i.e., the gcc command) is executed

▪ Otherwise this rule is not executed

➢ The same is done for the file2.o rule

➢ At the end the target is executed if necessary

target: file1.o file2.o

<tab>gcc –Wall –o myExe file1.o file2.o

file1.o: file1.c myLib1.h

<tab>gcc –Wall –g –I./dirI –c file1.c

file2.o: file2.c myLib1.h myLIb2.h

<tab>gcc –Wall –g –I./dirI –c file2.c

33Operating Systems

Example 4: dependencies

❖ If the target is not a file name, it is a "phony"
target that should always be executed

❖ To be sure that is always executed

➢ .PHONY : target

target: file1.o file2.o

<tab>gcc –Wall –o myExe file1.o file2.o

...

file2.o: file2.c myLib1.h myLIb2.h

<tab>gcc –Wall –g –I./dirI –c file2.c

Action name
("phony" target)

File name

Regardless the existence of a file with the same
name and more recent than dependencies

34Operating Systems

Implicit rules and modularity

❖ There exist very powerful rules for improving
modularity and make more efficient the writing of
makefiles

➢ Use of macros

➢ Use of implicit rules

▪ The dependence between .o and .c is automatic

▪ The dependence between .c and .h is automatic

▪ Recursive dependencies are analyzed automatically

▪ etc.

35Operating Systems

Example 5: Macro

❖ Macro allows to define

➢ Symbols

▪ Compilers, compilation flags, etc.

➢ Lists

▪ Object files, executables, directories, etc.

CC=gcc

FLAGCS=-Wall -g

SRC=main.c bst.c list.c util.c

project: $(SRC)

<tab>$(CC) $(FLAGS)–o project $(SRC) –lm

Definition of macro:
macro=name
(with or without spaces)

Use of the macro:
$(macro)

36Operating Systems

Example 6: Multi-Folder

CC=gcc

FLAGCS=-Wall -g

SDIR=source

HDIR=header

ODIR=obj

project: $(ODIR)/main.o $(ODIR)/bst.o

<tab>$(CC) $(FLAGS)–o $@ $^

$(ODIR)/main.o: $(SDIR)/main.c $(HDIR)/main.h

<tab>$(CC) $(FLAGS) -c $^

$(ODIR)/bst.o: $(SDIR)/bst.c $(HDIR)/bst.h

<tab>$(CC) $(FLAGS) -c $^

The macro $^ copies the
list of files reported in the
list of dependencies

The macro $@
copies the current
"target name"

The macro $< would copy the
first file reported in the list of
dependencies

37Operating Systems

Debugger: gdb

❖ Software package used to analyze the behavior
of another program in order to identify and
eliminate errors (bugs)

❖ GNU debugger gdb is available for almost all

Operating Systems

❖ It can be used

➢ As a "stand-alone" tool

▪ Particularly inconvenient use

➢ Integrated with many editors (e.g., emacs)

➢ Embedded in some graphical IDE

❖ Abbreviate form of commands can be given

38Operating Systems

Action Command

Execution commands run (r)
next (n)
next <NumberOfSteps>
step (s)
step <NumberOfSteps>
stepi (si)
finish (f)
continue (c)

Breakpoint commands info break
break (b), ctrl-x-blank
break LineNumber
break FunctionName
break fileName:LineNumber
disable BreakpointNumber
enable BreakpointNumber

Debugger: gdb

39Operating Systems

Action Command

Print commands print (p)
print expression
display expression

Stack operations down (d)
up (u)
Info args
Info locals

Code listing commands list (p)
list LineNumber
list FirstLine, LastLine

Miscellaneous commands file fileName
exec filename
kill

Debugger: gdb

http://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

