
File System

Directories in Linux
Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

2Operating Systems

Directories

 No storage system contains a single file

 Files are organized in directories

 A directory is a node (of a tree) or a vertex (of a
graph) that stores information about the (regular)
file that it contains

 Both directories and files are saved in mass
memory

 Operations that can be performed on directories
are similar to the ones applied to files

 Creation, deletion, listing, rename, visit, search,
etc.

3Operating Systems

Structure

 Structuring a file systems by means of directories
has several advantages:

 Efficiency

 Speed in modifying the file system, e.g., searching a
file

 Naming

 Simplicity for a user to identify his files

 Allow to assign the same name to different files

 Grouping (organization)

 Grouping programs and data according to their
characteristics

● Editors, compilers, documents, etc.

4Operating Systems

Directories with one level

 The simplest structure has only one level

 All the files of the file system are stored within
the same directory

 The files are differentiated by their name only

 Each name is unique within the entire file system

catdirectory

file

bo a test data mail cont

Directory entry

File (data)

5Operating Systems

Directories with one level

 For each file, two structures are exploited:

 Directory entry: indicates and name of the file and
possibly other information about the file

 Data: stored in a different location than the
directory entry, they are referred from the
directory entry with a pointer

catdirectory

file

bo a test data mail cont

Directory entry

File (data)

6Operating Systems

Directories with one level

 Performance

 Efficiency

 Easily understandable and usable structure

 Easy and efficient managing of the file system

 Naming

 Files must have unique names

 It has evident limitations as the number of stored
files increases

 Grouping

 Management of files of a single user is complex

 Management of multiple users is practically
impossible

7Operating Systems

Directories with two levels

 Files are contained in a two-level tree

 Each user can have their own directory

 Each user has its own directory

 All the operations are executed only in the correct
home directory

user 1 user 2 user 3 user n

data bin progs cat data tmp tmp bin

Master file
directory

User file
directory

Main directory
(users)

Directory entry
of the home of

user 1

Directory entry
of the home of

user n

File (data)

8Operating Systems

Directories with two levels

 Performance

 Efficiency

 “user oriented” view of the file system

 Simplified and efficient searches on a single user

 Naming

 It is possible to have files with the same name if
they belong to different users

 A path name must be specified for each file

 Grouping

 Simplified between different users

 Complex for each individual user

9Operating Systems

Tree directories

 Generalize previous directories systems

 Directories and files are organized as a tree

 Every node/vertex of the tree can include as entry
other nodes/vertex of the tree

10Operating Systems

Tree directories

 Every user can manage both files and directories
(and subdirectories)

 Concept of: current work directory, change of
directory, absolute and relative path name, etc.

 Performance

 Efficiency

 Efficient searches based on the tree structure and
therefore to its depth and breadth

 Naming

 With absolute path or relatice to the current working
directory

 Grouping

 Extended possibilities, flexible

Concepts analysed in
the experimental part

related to Linux

11Operating Systems

Acyclic graph directories

 A tree file system does not allow sharing

 It is often useful to refer to the same object in
the file system with different filenames

 Same user refers to an object with different
pathnames

 Different users want to share objects

 It is worth noting that duplication of the object
(i.e., the copy) is not a solution because of

 Increase of file system occupation

 Possible information incoherence in one or more
copies

12Operating Systems

Acyclic graph directories

 Tree file systems can be generalized organizing
them as acyclic graphs.

 They allow to share information, making it visible
with different paths

Shared
entry

13Operating Systems

Acyclic graph directories

 Method

 The sharing of an entry can be obtained in
different ways

 In UNIX-like systems, the standard strategy is the
use of links

 A link is a reference (pointer) to another (pre-
existing) entry

 The presence of links increases difficulty in
managing file systems

 Necessary to distinguish between native entries and
relative links, during creation, modification, and
removal

14Operating Systems

Acyclic graph directories

 During a visit or a search

 If the entry is a link, the operating system must
use an indirect addressing, i.e., it has to “resolve”
the link to access the original entry

 By means of links, each entry of the file system
can be reached with different absolute pathnames
(and with different names)

 Analysis on the content of the file system (e.g.,
statistics on how many “.c” files are present) are
much more complex

15Operating Systems

Acyclic graph directories

 During the removal of an entry

 It is necessary to establish how to manage the link
and the referred object

 The removal of a link is usually performed
immediately, and in general it does not affect
original object

 It is important to define how to delete the data

● If you delete the object, what do you do with the links
that point to the object?

● When can the space reserved for the object be
reused?

16Operating Systems

Acyclic graph directories

 Delete data immediately

 It is possible to leave links pending (dangling)

 The OS is notified that the link does not point
to an entry when it tries to use it

Soft-link
UNIX

17Operating Systems

Acyclic graph directories

Hard-link
UNIX

 Delete data when the last link is deleted

 To avoid pending links we can track them, we
have to manage the presence of multiple links
and objects

 Maintaining the list of all the links is expensive
(it is a list of variable length)

 Delete all the links (i.e., the entries) when the
object is deleted is expensive, because you
need to search all the links

 It is convenient to store only a counter
(number of links)

 In UNIX systems this counter is stored in i-node

 Increased and decreased appropriately

“ls -l”
command

18Operating Systems

Acyclic graph directories

 Creating a new link to a directory could cause the
generation of a cycle in the file system

 Managing a cyclic graph is more complex

 Search and visit has to avoid infinite recursion

 The simplest strategy is to avoid the creation of a
link pointing a directory

19Operating Systems

Cyclic graph directories

 The alternative to acyclic graphs is cyclic graphs

 Allow the creation of cycles

 Need to manage them appropriately in all phases

data

Presence of
a cycle

20Operating Systems

Cyclic graph directories

 Different approaches could be used to manage
cyclic graphs

 These approaches should take into account
different problematics

 An element may self-reference itself, and never be
deleted and/or detected

 The simplest method is not to visit links or
sub-categories of the link

21Operating Systems

Allocation

 Allocation techniques

 For allocation we mean techniques for choosing
the blocks of the disks to store files

 Observation

 We will not deal with the structure of the storage
units

 Those unit can be modelled as a linear indexable set
(a vector) of blocks

22Operating Systems

Allocation

 Main allocation techniques

 Contiguous

 Linked

 Indexed

0/1
Empty/Full

23Operating Systems

Contiguous allocation

 Each file is stored in a contiguous set of blocks

For each file, the directory
specifies the start address
of the first block (b), and
the length of the file (n)

The file use the blocks
b, b+1, b+2, … , b+n-1

Each file has internal
fragmentation (last block

only partially used)

24Operating Systems

Contiguous allocation

 Advantages

 Really easy allocation strategy

 Few information is stored for each file

 It allows immediate and sequential accesses

 Each block is after the previous one and before the
following one (i.e., blocks are consecutive)

 It allows simple and direct accesses

 The block i starting from block b is at address
b + i-1

25Operating Systems

Contiguous allocation

 Drawbacks

 An allocation policy is needed

 Where are new files allocated?

● Algorithms: first-fit, best-fit, worst-fit, etc.

● How can the required space be determined?

 No allocation algorithm is free of defects,
consequently there is a waste of space

 This waste is known as external fragmentation

 Possible re-compaction (on-line and off-line)

 Dynamic allocation problems

 Files cannot grow indefinitely, because the available
space is limited by the next file

It is necessary to find a
contiguous free space of

sufficient size

26Operating Systems

Linked allocation

 Each file can be allocated by means of a linked
list of blocks

1

0

Each block contains a
pointer to the next block

The directory contains a
pointer to the first and to
the last block of the file

Blocks of each file are
scattered throughout the

entire disk

27Operating Systems

Linked allocation

 Advantages

 Resolve problems of contiguous allocation

 Allows dynamic allocation of file

 Eliminate the external fragmentation

 Avoid the use of complex allocation algorithms

28Operating Systems

Linked allocation

 Drawbacks

 Each read operation imply a sequential access to
the blocks

 It is efficient only for sequential accesses

 Direct access requires reading a chain of pointers
until the desired address is reached

 Each access to a pointer (or block) consists in a read
operation

 To store pointers

 Space is required

 Pointers are critical from the viewpoint of reliability

 Decrease the space usable to store data

29Operating Systems

Linked allocation: FAT

 File Allocation Table (FAT)

 Initially developed by IBM and Digital Equipment
Corporation, and then by Bill Gates and Marco
McDonald for MS-DOS

 It was the primary file system for many Microsoft
Windows based operation systems (until the
Windows ME version)

 Windows NT and following versions introduced
NTFS, but they maintained the retro-compatibility
with FAT

 It is a variant of the linked allocation method

Move pointers
from the blocks to
one specific block

30Operating Systems

Linked allocation: FAT

 References are not stored inside the data blocks
on the disk, but directly in a specific block
containing the FAT

 Table with one element for each block on the disk

 The sequence of blocks referred to a file is
identified starting from the directory using

 Starting block of the file in the FAT

 Sequent of pointers available (directly) in the FAT
(no longer in the blocks)

Move pointers
from the blocks to
one specific block

31Operating Systems

Linked allocation: FAT

 The reading of each block requires two disk
accesses (one to the FAT and one to the block to
read)

 First access on the FAT

 Second to the data

block

 Limits

 Slow access

 Criticism on reliability

(if the FAT is lost,

everything is lost)

 The dimension of the FAT is a critical aspect. What
is the size of the FAT?

Directory
entry

FAT

32Operating Systems

Indexed allocation

 To allow an efficient and direct access, it is
possible to incorporate all the pointers into a
table of pointers

 This table of pointers is usually named index
block or i-node

 Each file has its own table, which is a vector of
addresses of the blocks in which the file is
contained

 The i-th element of the vector identifies the i-th
block of the file

33Operating Systems

Indexed allocation

It is not a FAT because
pointers are all in

sequence (there is not a
list of pointers)

The directory contains only
the pointer to the index block

34Operating Systems

Indexed allocation

 Compared to the linked allocation, the allocation
of an index block is always needed

 Index blocks of limited size allow to reduce the
waste of space

 Index blocks of extended size increase the number
of references that can be inserted in the index
block

 In any case, it is necessary to manage situations in
which the index block is not sufficient to contain all
the pointers to the blocks of the file

 There are different schemes

● With linked index blocks

● With multi-level index blocks

● Combined
Schema UNIX/Linux

35Operating Systems

 Combined schema is used in UNIX/Linux systems

 To each file is associated a block named i-node

 Each i-node contains different information
including 15 pointers to the data blocks of the file

 The first 12 pointers are direct, i.e., they points to
the blocks of the files

 Pointers 13, 14 and 15 are indirect pointers, with
increasing addressing level

● The block addressed by a pointer does not contain
data, but pointers (pointers to pointers) [pointers to
pointers to pointers] to the data blocks of the file

Indexed allocation: combined schema

36Operating Systems

The pointer
13 is of type
single indirect

Indexed allocation: combined schema

The pointer 14 is of
type double indirect

The pointer 15 is of
type triple indirect

With 64-bits pointers,
files up to 260 (exabyte)

bytes can be stored

Remember the
commands

"ls -la"
and

"ls -i"

37Operating Systems

A directory is a table that associates to each file name an i-node number
The pointer from a directory to the respective i-node is called hard-link

The same i-node number can be addressed by more links

Indexed allocation: combined schema

Hard-link

38Operating Systems

The i-node number
corresponds to the index (a

link) to a table in which each i-
node contains the information

related to a file

Allocazione indicizzata: schema combinato

Fixed length record that contains most of the
information related to files (i.e., it identifies the file

blocks)
Contains a counter that identifies the number of

pointers (links)
They are numbered starting from 1; some are

reserved for the OS

39Operating Systems

 Hard link (physical link)

 Directory entry that points (links) an i-node

 No hard link
 To directory (to avoid file system with cyclic graph

directories)

 To file on other file systems

 A file is physically removed only when all the hard
links have been removed

 Soft link (Symbolic link)

 The data block identified by the i-node points to a
data block that contains the path name of the file

 Basically, it is a file that in its only data block has
the name of another file

Allocazione indicizzata: schema combinato

40Operating Systems

The UNIX file system: An example

DIR. CHILD
Directory entry

of "2549 testdir"

The i-node 2549 is a sub-directory (leaf)
Its hard link count is equal to 2

One derives from the father directory ("testdir")
The other derives from itself ("testdir/.")

FATHER DIR.
Directory entry of

the directory 1267
(unknown name)

The i-node "2549 testdir" is a
sub-directory (leaf) of 1267

41Operating Systems

The UNIX file system: An example

The i-node "2549 testdir" is a
sub-directory (leaf) of 1267

DIR. CHILD
Directory entry

of "2549 testdir"

The i-node 1267 is a directory with a sub-directory
Its hard link count is equal at least to 3

One derives from the father directory (not reported)
One derives from itself (".")

One derives from the child directory ("./testdir/..")

42Operating Systems

Modern file systems

 I file system odierni più utilizzati

 FAT

 NTFS

 Ext

Gigabyte GB 109

Terabyte TB 1012

Petabyte PB 1015

Exabyte EB 1018

Zettabyte ZB 1021

Yottabyte YB 1024

Attribute/
File System

FAT32 exFAT NTFS Ext4

Maximum
dimension
of the disk

2 TB 64 ZB
2 Tb
(extensible to
26 Tb)

1 EB

Maximum
dimension
of the file

4 GB 16 ZB
As much as
the disc

16 TB

Main use USB key USB key
Internal disk
of Windows

Internal disk
of Linux and
USB key

43Operating Systems

Modern file systems

 FAT

 FAT16 (or simply FAT, 1987)

 First version, it does not support files larger than
2GByte, and a disk of maximum dimension of
32GBytes

 FAT32

 Evolution of FAT16, with cluster of 32 bit, increases
the support for larger files and disks

 exFAT (extended FAT or FAT64, 2006)

 Increase support for larger files and disks again,
designed to be light for flash drives / USB keys

Windows
https://en.wikipedia.org/wiki/File_Allocation_Table

VFAT (Virtual FAT) supports long file names

FAT12 for
floppy disk

44Operating Systems

Modern file systems

 NTFS

 Compared to FAT, it increases the supported size

 Like the latest Ext file systems, it supports
journaling and disk encryption

 It is not as fast as FAT or Ext, but it is the
standard choice for Windows hard drives

 MAC and Linux support NTFS with specific drivers
(for read and write operations)

Preserves the integrity of the file system from
blackouts through the concept of transaction

Windows
https://en.wikipedia.org/wiki/NTFS

45Operating Systems

Modern file systems

 Ext

 Ext (1992)

 The main lack of Ext was that it can manage a
single timestamp per file, unlike the 3 timestamps
we use today (creation, last modification, last
access)

 Ext2 (1993)

 Size extension

 It does not guarantee il journaling

● If the computer was turned off during the writing
phase, perhaps due to a power failure, the file system
is corrupted, making it impossible to access the files
on the disk.

Minix  Linux
https://en.wikipedia.org/wiki/Ext4

46Operating Systems

Modern file systems

 Ext3 (2001)

 Fixes the problem of file system corruption

 In practice, when writing a file, it is first written to
the disk, then, if the writing was successful, it is
recorded on the file system

● If the write process is interrupted without being
completed, the file system remains unaffected, and
the user does not notice anything

 Ext4 (2006)

 It increases support for ever-increasing disk size and
improves performance (i.e., increasing read and
write performance in terms of speed)

 Retro-compatible with ext3

47Operating Systems

Management of the file system

 The POSIX standard provides a set of functions
to perform the manipulation of directories

 The function stat

 Allows to understand the type of "entry" (file,
directory, link, etc.)

 This operation is permitted using the C data
structure returned by the function, i.e. struct stat

 Some other functions to manage the file system

 getcwd, chdir

 mkdir, rmdir

 opendir, readdir, closedir

Returned
data

structure

Positioning

Creation
Cancellation

Visit / Inspection

48Operating Systems

stat ()

#include <sys/types.h>

#include <sys/stat.h>

int stat (const char *path, struct stat *sb);

int lstat (const char *path, struct stat *sb);

int fstat (int fd, struct stat *sb);

 The function stat returns a reference to the

structure sb (struct stat) for the file (or file
descriptor) passed as a parameter

 Returned values

 0 on success

 -1 on error

Path to return
information

about

Returned
data

structure

49Operating Systems

stat ()

#include <sys/types.h>

#include <sys/stat.h>

int stat (const char *path, struct stat *sb);

int lstat (const char *path, struct stat *sb);

int fstat (int fd, struct stat *sb);

 The function

 lstat returns information about the symbolic link,
not the file pointed by the link (when the path is
referred to a link)

 fstat returns information about a file already
opened (it receives the file descriptor instead of a
path)

50Operating Systems

stat ()

 The second argument of stat is the pointer to
the structure stat

 The field st_mode encodes the file type

struct stat {

mode_t st_mode; /* file type & mode */

ino_t st_ino; /* i-node number */

dev_t st_dev; /* device number */

dev_t st_rdev; /* device number */

...

};

51Operating Systems

stat ()

 Some macros allow to understand the type of the
file

 S_ISREG regular file, S_ISDIR directory,
S_ISBLK block special file, S_ISCHR character
special file, S_ISFIFO FIFO, S_ISSOCK socket,
S_ISLNK symbolic link

struct stat {

mode_t st_mode; /* file type & mode */

ino_t st_ino; /* i-node number */

dev_t st_dev; /* device number */

dev_t st_rdev; /* device number */

...

};

52Operating Systems

Example

struct stat buf;

...

if (lstat(argv[i], &buf) < 0) {

fprintf (stdout, "lstat error.\n");

exit(1);

}

if (S_ISREG(buf.st_mode)) ptr = "regular";

else if (S_ISDIR(buf.st_mode)) ptr = "directory";

else if (S_ISCHR(buf.st_mode)) ptr = "char special";

else if (S_ISBLK(buf.st_mode)) ptr = "block special";

else if (S_ISFIFO(buf.st_mode)) ptr = "fifo";

else if (S_ISLNK(buf.st_mode)) ptr = "symbolic link";

else if (S_ISSOCK(buf.st_mode)) ptr = "socket";

printf("%s\n", ptr);

}

Allow to
understand

if it is a
directory !

53Operating Systems

getcwd () and chdir ()

#include <unistd.h>

char *getcwd (char *buf, int size);

int chdir (char *path);

 Get (change) the path of the working directory

 Returned values

 getcwd

 The buffer buf on success; NULL on error

 chdir

 0 on success; -1 on error

Dimension of
buf

Change
Directory

Get Current
Working Directory

54Operating Systems

Example

#define N 100

char name[N];

if (getcwd (name, N) == NULL)

fprintf (stderr, "getcwd failed.\n");

else

fprintf (stdout, "dir %s\n", name);

if (chdir(argv[1]) < 0)

fprintf (stderr, "chdir failed.\n");

else

fprintf (stdout, "dir changed to %s\n", argv[1]);

55Operating Systems

mkdir () and rmdir ()

#include <unistd.h>

#include <sys/stat.h>

int mkdir (const char *path, mode_t mode);

int rmdir (const char *path);

 mkdir creates a new (empty) directory, rmdir
deletes a directory (if it is empty)

 Returned values

 0 on success

 -1 on error

See system call
open

Additional material (Not required at the exam)

57Operating Systems

opendir (), dirent () and closedir ()

#include <dirent.h>

DIR *opendir (

const char *filename

);

struct dirent *readdir (

DIR *dp

);

int closedir (

DIR *dp

);

Open a directory for reading
Returned values:

The pointer to the directory on success
The NULL pointer on error

Proceed with the reading of the directory
Returned values:

The pointer to the directory entry on success
The NULL pointer on error, or at the end of

the reading operation

Terminate the reading
Returned values:

0 on success
-1 on error

58Operating Systems

dirent structure

struct dirent {

inot_t d_no;

char d_name[NAM_MAX+1];

...

}

 The structure dirent (DIR *) returned by
readdir

 Has a format that depends on the specific
implementation

 It contains at least the following fields

 The i-node number

 The file name (null-terminated)

59Operating Systems

Example

#define N 100

...

struct stat buf;

DIR *dp;

char fullName[N];

struct dirent *dirp;

int i;

...

if (lstat(argv[1], &buf) < 0) {

fprintf (stderr, "Error.\n"); exit (1);

}

if (S_ISDIR(buf.st_mode) == 0) {

fprintf (stderr, "Error.\n"); exit (1);

}

if ((dp = opendir(argv[1])) == NULL) {

fprintf (stderr, "Error.\n"); exit (1);

}

Ask information
about the path in

argv[1]

If it is not a
directory, the

program terminates

Otherwise, the
directory is open

Structure for readdir

Structure for lstat

Directory "handle"

60Operating Systems

Example

i = 0;

while ((dirp = readdir(dp)) != NULL) {

sprintf (fullName, "%s/%s", argv[1], dirp->d_name);

if (lstat(fullName, &buf) < 0) {

fprintf (stderr, "Error.\n"); exit (1);

}

if (S_ISDIR(buf.st_mode) == 0) {

fprintf (stdout, "File %d: %s\n", i, fullName);

} else {

fprintf (stdout, "Dir %d: %s\n", i, fullName);

}

i++;

}

if (closedir(dp) < 0) {

fprintf (stderr, "Error.\n"); exit (1);

}

Read the directory
(iterating over all entries)

Request
information

about the entry
fullName

Display data

Closure and termination

