File System

Directories in Linux
Stefano Quer, Pietro Laface, and Stefano Scanzio
Dipartimento di Automatica e Informatica
Politecnico di Torino
skenz.it/os stefano.scanzio@polito.it

Operating Systems 2

Directories

% No storage system contains a single file

% Files are organized in directories

» A directory is a node (of a tree) or a vertex (of a
graph) that stores information about the (regular)
file that it contains

» Both directories and files are saved in mass
memory

%+ Operations that can be performed on directories
are similar to the ones applied to files

» Creation, deletion, listing, rename, visit, search,
etc.

Operating Systems _ ﬂi

% Structuring a file systems by means of directories
has several advantages:

> Efficiency
= Speed in modifying the file system, e.q., searching a
file
» Naming
= Simplicity for a user to identify his files
= Allow to assign the same name to different files
» Grouping (organization)

= Grouping programs and data according to their
characteristics

e Editors, compilers, documents, etc.

Operating Systems 4

Directories with one level

% The simplest structure has only one level

< All the files of the file system are stored within
the same directory

» The files are differentiated by their name only
» Each name is unique within the entire file system

Directory entry J=

bey

directory cat bo

Py

| File (data)

test data mail cont

s066

Operating Systems 9

Directories with one level

% For each file, two structures are exploited:

» Directory entry: indicates and name of the file and
possibly other information about the file

» Data: stored in a different location than the
directory entry, they are referred from the
directory entry with a pointer

[Directory entry ’=
directm\ cat bo a test | data | mail | cont

Iy

| File (data)

Operating Systems | 6

Directories with one level

s+ Performance

> Efficiency
= Easily understandable and usable structure
= Easy and efficient managing of the file system

» Naming
= Files must have unique names

= [t has evident limitations as the number of stored
files increases

» Grouping
= Management of files of a single user is complex

= Management of multiple users is practically
impossible

Operating Systems 74

Directories with two levels

+»» Files are contained in a two-level tree

% Each user can have their own directory
» Each user has its own directory
> All the operations are executed only in the correct

ho\me directory (Directory entry
{ Main directory of the home of
(users) I(\:/I"?esct:fgrg'e user 1 | user 2 user3<|: user n
User file dat bi t dat ¢ t bi
directory ata in progs ca ata mp mp in
Directory entry ‘ ‘
of the home of
user 1 File (data)

Operating Systems | | 8

Directories with two levels

s+ Performance

> Efficiency
= “user oriented” view of the file system
= Simplified and efficient searches on a single user

» Naming

= Tt is possible to have files with the same name if
they belong to different users

= A path name must be specified for each file
» Grouping

= Simplified between different users

= Complex for each individual user

Operating Systems =

Tree directories

%+ Generalize previous directories systems

 Directories and files are organized as a tree

» Every node/vertex of the tree can include as entry
other nodes/vertex of the tree

root spell bin pmgrams‘

iﬂbié&?/’”%

prog | copy

N2 666 [

5666 66

Operating Systems L § e 10

‘e

Tree directories

< Every user can manage both files and directories
(and subdirectories)

» Concept of: current work directory, change of
directory, absolute and relative path name, etc.

+» Performance Concepts analysed in
o the experimental part
> EffICIenCY related to Linux

» Efficient searches based on the tree structure and
therefore to its depth and breadth

» Naming

= With absolute path or relatice to the current working
directory

» Grouping
= Extended possibilities, flexible

Operating Systems 11

Acyclic graph directories

% A tree file system does not allow sharing

% It is often useful to refer to the same object in
the file system with different filenames

» Same user refers to an object with different
pathnames

> Different users want to share objects
> It is worth noting that duplication of the object
(i.e., the copy) is not a solution because of
= Increase of file system occupation

= Possible information incoherence in one or more
copies

Operating Systems | 12

Acyclic graph directories

% Tree file systems can be generalized organizing
them as acyclic graphs.

» They allow to share information, making it visible
with different paths

root | dict | spell

N

list all W |count count|{words| list

S| T |

| \ Shared }
— [ist | rade | w7 entry

Operating Systems oty | I3

Acyclic graph directories

s Method

» The sharing of an entry can be obtained in
different ways

» In UNIX-like systems, the standard strategy is the
use of links
= Alink is a reference (pointer) to another (pre-
existing) entry
» The presence of links increases difficulty in
managing file systems
= Necessary to distinguish between native entries and

relative links, during creation, modification, and
removal

Operating Systems e 14

|

Acyclic graph directories

%+ During a visit or a search

> If the entry is a link, the operating system must
use an indirect addressing, i.e., it has to “resolve”
the link to access the original entry

» By means of links, each entry of the file system
can be reached with different absolute pathnames
(and with different names)

= Analysis on the content of the file system (e.q.,

statistics on how many “.c” files are present) are
much more complex

Operating Systems - | i)

Acyclic graph directories

“+ During the removal of an entry

> It is necessary to establish how to manage the link
and the referred object

= The removal of a link is usually performed
immediately, and in general it does not affect
original object

= Tt is important to define how to delete the data

e If you delete the object, what do you do with the links
that point to the object?

e When can the space reserved for the object be
reused?

Operating Systems . | 16

Acyclic graph directories

% Delete data immediately
» It is possible to leave links pending (dangling)
Soft-link » The OS is notified that the link does not point

UNIX to an entry when it tries to use it

Operating Systems | 74

Acyclic graph directories

++» Delete data when the last link is deleted

» To avoid pending links we can track them, we
— have to manage the presence of multiple links
ard-link .
UNIX and objects

= Maintaining the list of all the links is expensive
(it is a list of variable length)

= Delete all the links (i.e., the entries) when the
object is deleted is expensive, because you
need to search all the links

» It is convenient to store only a counter

[“s -]>(number of links)
command = In UNIX systems this counter is stored in i-node

= Increased and decreased appropriately

Operating Systems e | 18

Acyclic graph directories

% Creating a new link to a directory could cause the
generation of a cycle in the file system
» Managing a cyclic graph is more complex
= Search and visit has to avoid infinite recursion

» The simplest strategy is to avoid the creation of a
link pointing a directory

15,

Operating Systems

Cyclic graph directories

% The alternative to acyclic graphs is cyclic graphs
> Allow the creation of cycles
» Need to manage them appropriately in all phases

root | dict | spell

N

list all I | count count|words| list
& T~ | &
L
N
[Presence of J/
Y Ayl
a cycle data | list | rade| w7

Operating Systems 20

Cyclic graph directories

< Different approaches could be used to manage
cyclic graphs

% These approaches should take into account
different problematics

» An element may self-reference itself, and never be
deleted and/or detected

% The simplest method is not to visit links or
sub-categories of the link

Operating Systems 21

Allocation

% Allocation techniques

» For allocation we mean techniques for choosing
the blocks of the disks to store files
» Observation

= We will not deal with the structure of the storage
units

= Those unit can be modelled as a linear indexable set
(a vector) of blocks

() A single disk

Operating Systems - o 22

Allocation

% Main allocation techniques
» Contiguous
> Linked
» Indexed

0/1
Empty/Full

Operating Systems Fio 23

"'.-i-

Contiguous allocation

“* Each file is stored in a contiguous set of blocks

AN directory
R _
file start length
oﬁouﬂtj o] 3] count O 2 //For each file, the directory\
f tr 14 3 specifies the start address
4Ll sL1sl1 701 mal 19 6 of the first block (b), and
81 o[1100110 list 28 4 the length of the file (n)
tr f 6 2 Y
12011314115]
16[]17[118[119[] The file use the blocks }

'| :
20D21Dm§éD235 b, b+1, b+2, ..., b+n-1
24D25|:|_26D27|:|
235295“28531 Each file has internal
- fragmentation (last block

. only partially used)

Operating Systems oy 24

Contiguous allocation

% Advantages
> Really easy allocation strategy
= Few information is stored for each file

» It allows immediate and sequential accesses

= Each block is after the previous one and before the
following one (i.e., blocks are consecutive)

> It allows simple and direct accesses

= The block i starting from block b is at address
b +i-1

Operating Systems 25

Contiguous allocation

It is necessary to find a
v+ Drawbacks contiguous free space of

sufficient size

» An allocation policy is needed

= Where are new files allocated?
e Algorithms: first-fit, best-fit, worst-fit, etc.
e How can the required space be determined?
» No allocation algorithm is free of defects,
consequently there is a waste of space
= This waste is known as external fragmentation
= Possible re-compaction (on-line and off-line)

» Dynamic allocation problems

= Files cannot grow indefinitely, because the available
space is limited by the next file

Operating Systems 17 26

i

Linked allocation

%+ Each file can be allocated by means of a linked
list of blocks

The directory contains a

e N directory pointer to the first and to

S fle start end the last block of the file
— —
jeep 9 25

\ Each block contains a
8] pal1o2111[] L pointer to the next block

17118]19[]

20]21 2|:|23|:|
p
24[25F126[127[1 Blocks of each file are

28[129[130 131[] scattered throughout the
- entire disk

Operating Systems -~ e .. 27

Linked allocation

% Advantages

» Resolve problems of contiguous allocation
= Allows dynamic allocation of file
= Eliminate the external fragmentation
= Avoid the use of complex allocation algorithms

L

Operating Systems T = 28

Linked allocation

2 Drawbacks

» Each read operation imply a sequential access to
the blocks
> It is efficient only for sequential accesses

= Direct access requires reading a chain of pointers
until the desired address is reached

= Each access to a pointer (or block) consists in a read
operation

» To store pointers
= Space is required
= Pointers are critical from the viewpoint of reliability
= Decrease the space usable to store data

Operating Systems i~ 29

Linked allocation: FAT

Move pointers
from the blocks to

% File Allocation Table (FAT) —_ one specific block

> Initially developed by IBM and Digital Equipment
Corporation, and then by Bill Gates and Marco
McDonald for MS-DOS

» It was the primary file system for many Microsoft
Windows based operation systems (until the
Windows ME version)

= Windows NT and following versions introduced

NTFS, but they maintained the retro-compatibility
with FAT

> It is a variant of the linked allocation method

Operating Systems 17 30

Linked allocation: FAT

*+ References are not stored inside the data blocks
on the disk, but directly in a specific block
containing the FAT

> Table with one element for each block on the disk

» The sequence of blocks referred to a file is
identified starting from the directory using

= Starting block of the file in the FAT
= Sequent of pointers available (directly) in the FAT

(no longer in the blocks)
Move pointers
from the blocks to
one specific block

Operating Systems 31

Linked allocation: FAT

< The reading of each block requires two disk
accesses (one to the FAT and one to the block to

read)
> First access on the FAT |t =T 217
> Second to the data o e ’
block Directory > 0217 618
2 Limits o

339

> Slow access ‘
> Criticism on reliability o18| 330 &
(If the FAT IS IOSt’ no. of disk blocks -1

everything is lost) L1l

» The dimension of the FAT is a critical aspect. What
s the size of the FAT?

Operating Systems e

Indexed allocation

% To allow an efficient and direct access, it is
possible to incorporate all the pointers into a
table of pointers

» This table of pointers is usually named index
block or i-node

“ Each file has its own table, which is a vector of
addresses of the blocks in which the file is
contained

> The i-th element of the vector identifies the i-th
block of the file

Operating Systems | 39

Indexed allocation

The directory contains only
the pointer to the index block

— =

file index block
o1 1M 21 3] e e
o B | 7[] It is not a FAT because h
pointers are all in
gLl 9 sequence (there is not a
list of pointers)
12[113114)

20[121 J22[A23[]
2412526127]

28 29[J30[131[]
\ /

Operating Systems 17 34

i

Indexed allocation

<+ Compared to the linked allocation, the allocation
of an index block is always needed

» Index blocks of limited size allow to reduce the
waste of space

> Index blocks of extended size increase the number
of references that can be inserted in the index
block

= In any case, it is necessary to manage situations in
which the index block is not sufficient to contain all
the pointers to the blocks of the file

= There are different schemes
e With linked index blocks
e With multi-level index blocks
e Combined

[Schema UNIX/Linux]

Operating Systems 33

Indexed allocation: combined schema

s+ Combined schema is used in UNIX/Linux systems
*+» To each file is associated a block named i-node

< Each i-node contains different information
including 15 pointers to the data blocks of the file

» The first 12 pointers are direct, i.e., they points to
the blocks of the files

» Pointers 13, 14 and 15 are indirect pointers, with
increasing addressing level

e The block addressed by a pointer does not contain
data, but pointers (pointers to pointers) [pointers to
pointers to pointers] to the data blocks of the file

Operating Systems Fio 36

"'.-i-

Indexed allocation: combined schema

/Remember the\ Ul
commands owners (2)
"Is -1a" timestamps (3)

—>| data

and size block count

\ "IS _ill data
—»{ data The pointer 14 is of
~ . type double indirect
' /

N

~|| directblocks J : '
The pointer s == /
13 is of type | .
single indirect)-lsingle oot — ,‘ s Ldaa] data
double indirect ~——1daia : * =—>| data
triple indirect N =—— gata
\\ ;—b data

The pointer 15 is of files up to 260 (exabyte)

\ With 64-bits pointers,
type triple indirect J bytes can be stored

Operating Systems . ~h 1 ;-. 3%

‘ Hard-link \

[A directory is a table that associates to each file name an i-node number

The pointer from a directory to the respective i-node is called hard-link
The same i-node number can be addressed by more links

Operating Systems N *-.1

_Lm4i.4

data clnka irecto
Faee arry block block

il
| RlEname

38

e,
O . O O O

/ Fixed length record that contains most of the \
information related to files (i.e., it identifies the file
blocks)
Contains a counter that identifies the number of
pointers (links)
They are numbered starting from 1; some are

_ reserved for the OS -

The i-node number
corresponds to the index (a

~

link) to a table in which each i-

&

node contains the information
related to a file

J

Operating Systems L 1S 39

Allocazione indicizzata: schema combinato

% Hard link (physical link)
» Directory entry that points (links) an i-node

> No hard link

= To directory (to avoid file system with cyclic graph
directories)

= To file on other file systems

> A file is physically removed only when all the hard
links have been removed

< Soft link (Symbolic link)
» The data block identified by the i-node points to a
data block that contains the path name of the file

> Basically, it is a file that in its only data block has
the name of another file

,.*l
The UNI

Operating Systems

directory blocks and data blocks

-
i=niosde array hlnlc::‘r
] N | L
i h 2 1
f i i
i 1 ‘#‘- i i w
F i
i bﬂ} i i
['I]
] %
/ i {
(]]
i=renl node i=ninde / \
] 1267 249 / §
_1'549'
1267

DIR. CHILD

Directory entry
of "2549 testdir"

é The i-node 2549 is a sub-directory (leaf)
Its hard link count is equal to 2
One derives from the father directory ("testdir")
The other derives from itself ("testdir/.")

J

=

40

file system: An example

f Directory entry of
the directory 1267

directory
block

FATHER DIR. A

(unknown name))

\

259 | ceptdir

The i-node "2549 testdir" is a
sub-directory (leaf) of 1267

Operating Systems |

i=nide array

41

DIR. CHILD gl
Directory entry
of "2549 testdir"

The i-node 1267 is a directory with a sub-directory
Its hard link count is equal at least to 3

~

One derives from the father directory (not reported)

One derives from itself (".")
_ One derives from the child directory ("./testdir/..")

J

1'5-1'5' regtdir

The i-node "2549 testdir" is a
sub-directory (leaf) of 1267

J

Operating Systems 42

Modern file systems

< I file system odierni piu utilizzati ”gs:gyv::f;f:;\
Petabyte PB 101>
> FAT E?(:b;lt: EB 1018
> NTES Zettabyte ZB 102!

Yottabyte YB 1024 Y
> Ext %
Attribute/ FAT32 exFAT NTFS Ext4
File System

Maximum 2Thb
dimension 2 TB 64 ZB (extensibleto 1EB
of the disk 26 Tb)
AP As much as
dimension 4GB 16 ZB) 16 TB
- the disc
of the file
Internal disk Internal disk

Main use USB key USB key of Linux and

of Windows USB key

Operating Systems . 117= 43

Modern file systems

Windows
https://en.wikipedia.org/wiki/File Allocation Table

« FAT
» FAT16 (or simply FAT, 1987)

= First version, it does not support files larger than
2GByte, and a disk of maximum dimension of

FAT12 for
floppy disk

32GBytes
> EAT3) / " VFAT (Virtual FAT) supports long file names |

= Evolution of FAT16, with cluster of 32 bit, increases
the support for larger files and disks

> exFAT (extended FAT or FAT64, 2006)

= Increase support for larger files and disks again,
designed to be light for flash drives / USB keys

Operating Systems | 44

Modern file systems

Windows
https://en.wikipedia.org/wiki/NTFS

* NTFS
» Compared to FAT, it increases the supported size

> Like the latest Ext file systems, it supports
journaling and disk encryption

_—\

[Preserves the integrity of the file system from }

blackouts through the concept of transaction

> It is not as fast as FAT or Ext, but it is the
standard choice for Windows hard drives

» MAC and Linux support NTFS with specific drivers
(for read and write operations)

L

Operating Systems vy | 45

Modern file systems

Minix = Linux
https://en.wikipedia.org/wiki/Ext4
oo Ext

> Ext (1992)

= The main lack of Ext was that it can manage a
single timestamp per file, unlike the 3 timestamps

we use today (creation, last modification, last
access)

> Ext2 (1993)
= Sjze extension

= It does not guarantee il Journaling

e If the computer was turned off during the writing
phase, perhaps due to a power failure, the file system

is corrupted, making it impossible to access the files
on the disk.

Operating Systems | 46

Modern file systems

> Ext3 (2001)

= Fixes the problem of file system corruption

= In practice, when writing a file, it is first written to
the disk, then, if the writing was successful, it is
recorded on the file system

e If the write process is interrupted without being
completed, the file system remains unaffected, and
the user does not notice anything

> Ext4 (2006)

= Tt increases support for ever-increasing disk size and
improves performance (i.e., increasing read and
write performance in terms of speed)

= Retro-compatible with ext3

Operating Systems 17~ 47

Management of the file system

% The POSIX standard provides a set of functions
to perform the manipulation of directories

» The function stat
= Allows to understand the type of "entry" (file,
{ Returned

. directory, link, etc.)

structure This operation is permitted using the C data
structure returned by the function, i.e. struct stat

» Some other functions to manage the file system
= getcwd, chdir S— | positioning

0

= mkdir, rmdir s N

i : : Creation
= opendir, readdir, closedir Cancellation
J
[J?it/mspection]

Operating Systems 48

[

Pathtoreturn | | Returned
information data
#include <sys/types.h> about structure

#include <sys/stat.h>

4)

int stat (const char *path, struct stat *sb);
int lstat (const char *path, struct stat *sb);
int fstat (int £d, struct stat *sb);

(& /

% The function stat returns a reference to the
structure sb (struct stat) for the file (or file
descriptor) passed as a parameter

*+ Returned values

» 0 on success
» -1 on error

Operating Systems 49

4)

#include <sys/types.h>
#include <sys/stat.h>

int stat (const char *path, struct stat *sb);
int lstat (const char *path, struct stat *sb);
int fstat (int £d, struct stat *sb);

A)

*+» The function

> Istat returns information about the symbolic link,
not the file pointed by the link (when the path is
referred to a link)

> fstat returns information about a file already
opened (it receives the file descriptor instead of a
path)

Operating Systems 50

4)
struct stat {
mode_t st_mode; /* file type & mode */
ino t st_ino; /* i—-node number */
dev_t st_dev; /* device number */
dev_t st _rdev; /* device number */
};
o /)

< The second argument of stat is the pointer to
the structure stat

% The field st_mode encodes the file type

Operating Systems D1

(I
struct stat {
mode_t st_mode; /* file type & mode */
ino t st_ino; /* i—-node number */
dev_t st_dev; /* device number */
dev_t st _rdev; /* device number */
};
o)

%+ Some macros allow to understand the type of the
file
» S_ISREG regular file, S_ISDIR directory,
S _ISBLK block special file, S_ISCHR character

special file, S_ISFIFO FIFO, S_ISSOCK socket,
S_ISLNK symbolic link

Operating Systems

52

|

e

}

if
else
else
else
else
else
else

fprintf (stdout,
exit(1l);

if
if
if
if
if
if

(S_ISREG (buf.st mode))
(S_ISDIR(buf.st mode))
(S_ISCHR (buf.st mode))
(S_ISBLK (buf.st mode))
(S_ISFIFO (buf.st mode))
(S_ISLNK (buf.st mode))
(S_ISSOCK (buf.st mode))

printf ("%$s\n", ptr);

ptr
ptr
ptr
ptr
ptr
ptr
ptr

"lstat error.\n");

N\
struct stat buf; Allow to
... understand
. : if itis a
if (1lstat (argv[i], &buf) < 0) { directory !

"regular";
"directory";
"char special';
"block special';
"fifo";
"symbolic link";
"socket";

/

Operating Systems I

getcwd () and chdir ()

| Dimension of |
s
buf | 1
#include <unistd.h>
Get Current
char *getcwd (char *buf, int size); Working Directory

int chdir (char *path);

p
‘§‘§““‘--7 Change W J
~ . Directory

J

% Get (change) the path of the working directory

»» Returned values

» getcwd
= The buffer buf on success; NULL on error

» chdir
= 0 on success; -1 on error

Operating Systems

54

|

-

#define N 100

char name[N];

fprintf (stderr,
else
fprintf (stdout,

if (chdir (argv[1l])
fprintf (stderr,
else
fprintf (stdout,
8

if (getcwd (name, N) == NULL)

"getcwd failed.\n");
"dir %$s\n", name);

< 0)
"chdir failed.\n");

"dir changed to %$s\n", argv[1l]);

/

Operating Systems 55

mkdir () and rmdir ()
(See system call }

-
#include <unistd.h> open

#include <sys/stat.h>

int mkdir (const char *path, mode_t mode);

int rmdir (const char *path);
_)

<+ mkdir creates a new (empty) directory, rmdir
deletes a directory (if it is empty)
% Returned values
» 0 on success
» -1 on error

#¥include <sidlib.h>
#¥include <shing.h>
#include <clypeh>

#define MAXPARCLA 30
#define MAXRGA B0

irt main(ind arge. char "argv(])

Additional material

Operating Systems op 4

opendir (), dirent () and closedir ()

4 \J Open a directory for reading

#include <dirent.h> Returned values:

% The pointer to the directory on success
The NULL pointer on error
DIR *opendir (-\ -

const char *filename

) ;
Proceed with the reading of the directory A

Returned values:

struct dirent *readdir The pointer to the directory entry on success
DIR *dp The NULL pointer on error, or at the end of
the reading operation)
) ;
int closedir (= Terminate the reading b
DIR *dp Returned values:
) ; 0 on success

K / -1 on error)

Operating Systems T 58

dirent structure

4)

struct dirent {
inot_t d no;
char d name[NAM MAX+1];

}

A J

% The structure dirent (DIR *) returned by
readdir

» Has a format that depends on the specific
implementation
» It contains at least the following fields
= The i-node number
= The file name (null-terminated)

Operating Systems

23

|

Structure for Istat
//;define N 100

;‘.t;J;uct stat buf; Directory "handle”
DIR *dp;

char fullName|[N];
struct dirent *dirp;
int 1i;

Structure for readdir

if (lstat (argv[l], &buf) < 0) {
fprintf (stderr, "Error.\n"); exit (1);
}
if (S_ISDIR(buf.st mode) == 0) {
fprintf (stderr, "Error.\n"); exit (1);
}
if ((dp = opendir (argv([l])) == NULL) {
fprintf (stderr, "Error.\n"); exit (1);
d

Ask information
about the path in
argv[1]

If itis not a
directory, the
program terminates

Otherwise, the
directory is open

E

Operating Systems 60

|

/ Read the directory
i=0: (iterating over all entries)
while ((dirp = readdir(dp)) !'= NULL) ({

sprintf (fullName, "%s/%s", argv[l], dirp->d_name);
if (lstat (fullName, &buf) < 0) {

_ _ Request
fprintf (stderr, "Error.\n"); exit (1), information

} about the entry

if (S_ISDIR(buf.st mode) == 0) { fullName

fprintf (stdout, "File %

d: %$s\n", i, fullName);
} else {
fprintf (stdout, "Dir %d: %s\n", i, fullName);
}
i++;
} Display data

if (closedir(dp) < 0) {
fprintf (stderr, "Error.\n"); exit (1);
&

Closure and termination /

