" orgl .*.l - .q-.ﬂ__. g - — t"’
W AS

Processes

Advanced Control (exec)
Stefano Quer, Pietro Laface, and Stefano Scanzio
Dipartimento di Automatica e Informatica
Politecnico di Torino
skenz.it/os stefano.scanzio@polito.it

Operating Systems 2

fork and exec system calls

% System call fork creates a new process
duplicating the calling process.

% There are two main applications of this
mechanism

» Parent and child execute different code sections

= Example: a network server duplicates itself at each
client request, and the child serves the request while
the parent waits for a new client request

» Parent and child execute different code

= Example: a command interpreter (shell)

= Uses the family of exec system calls
e This function is used by many others system call

Operating Systems 3

exec system call

% System call exec substitutes the process code
with the executable code of another program

% The new program begins its execution as usual
(from main)

% In particular exec

» Does not create a new process

» Substitutes the calling process image (i.e., its
code, its data, the stack and the heap) with the
image of another program.

» The process PID does not change

= fork = duplicates an existent process
= exec - executes a new program

Operating Systems 7 =

i

Address space

Fork: =
[creates new processes (Pa rent\ - Child <
Code Code
Process () (\
- \ Data Data
Code N 5% \ J
X . % PCB | PCB |
Data
oCB] // New Process
New Code
New Data
Exec: > <
executes new programs \ PCB)

Operating Systems ey § 9

exec system call

% 6 versions of exec system call
> execl, execlp, execle
»> eXecv, execvp, execve

Type Action
| (list) Arguments are a list of strings
v (vector) Arguments is a vector of strings arguments (char
**)
p (path) The executable filename is looked for in the

directories listed in the environment variable PATH

e (environment) The last argument is an environment vector envp([]
which defines a set of new associations strings
name=value

Operating Systems

|

p

#include <unistd.h>

int execl (char *path, char *argO, ..., (char *)O0);
int execlp (char *name, char *arg0O, ..., (char *)O0);
int execle(char *path, char *arg0O,..., (char *)O,

char *envp[]);
int execv (char *path, char *argvI[]);
int execvp (char *name, char *argl[]);
int execve (char *path, char *arg[], char *envp[]);

(&

»» Returned values
» None on success
> -1 on error

Operating Systems oty | A

exec system call

< Arguments
» Pathname of the executable file

= Pathname can specify the name of a file, or the
name of a file with the related path

= In the "p" versions of the exec it is sufficient (and
better) to specify only the name of the file

e If the pathname does not contain a path, it is
inherited by the environment variable PATH (echo
$PATH)

e If the pathname contains a path, the "p" version of
exec is equal to the non-"p"

p" version
» In the non-"p" version the pathname should
include the path (otherwise unknown)

Operating Systems T = 8

exec system call

» Its argument list

= In the "I" versions, exec receives a list of parameters
(like @ main in C)
e The first argument is the name of the process
o In practice the string argv[0] of the C syntax

e The other arguments of the list are the arguments for
the executable

o In practice argv[i] with i>0 of the C syntax (i.e., argv[1],
argv[2], etc)
= In the "v" versions the argument is a vector of
pointers to the arguments
e In practice it is a dynamic matrix similar to ** argv

e Similar, not identical, because it is "NULL terminated"

o The value argv[i]==NULL indicates the end of the
arguments

Operating Systems | =

exec system call

» The optional environment variables

= In the non- "e" versions, environment variables are
inherited from the calling process

= In the versions "e", environment variables are
explicitly specified
e A second matrix dynamically allocated and NULL-

terminated is passed to the function, which is a vector
of pointers to strings of characters

e These strings specify the values of the desired
environment variables (e.qg., variable=value)

Operating Systems 10

.

whereis cp: /bin/c] f User defined name]
OKg L\/ p- %‘) b

execl ("/bin/cp", "mycp","./filel","./£file2" ,NULL) ;

E OK Alternative]
termination

execl ("/bin/cp", "mycp","./filel","./file2", (char*)0);

E@ [Path is missing]
L=

execl ("cp", "File copy","./filel","./file2", (char*)O0);

s ypath ($PATH)]

execlp ("cp", "mycp","./filel","./£file2", (char*)0);

(U)

Operating Systems 11

[The program (./pgrm) recalls itself
if it receives as parameter 1 or 2

(.. N

n = atoi (argv[l]);
switch (n) {
case 1:
printf (“#1:PID=%d; PPID=%d\n", getpid(), getppid());
sleep (n*10);
execlp ("./pgrm", "./Pgrm", "2", (char *) 0);
break;
case 2:
printf ("#2:PID=%d; PPID=%d\n", getpid(), getppid());
sleep (n*10);
execlp ("./pgrm", "myPgrm", "3", (char *) 0);
break;
default:
printf ("#3:PID=%d; PPID=%d\n", getpid(), getppid());
sleep (n*10);
break;

} .
The path is the same

1 .
\\feturn (1) arg0 (its name) changes //

Operating Systems 12

(

/ %with n=1
4

The PID does not change]

> ./pgrm 1 &
[2] 2471

#1: PID=2471; PPID=204% Shell commands (in blue)]

> ps —aux | grep 2471
scanzio 2471 0.0 0.0 4192 352 pts/2 S 19:29 0:00 ./pgrm 1
#2: PID=2471; PPID=2045

> ps —aux | grep 2471
scanzio 2471 0.0 0.0 4192 356 pts/2 S 19:29 0:00 ./Pgrm 2
#3: PID=2471; PPID=2045

> ps —aux | grep 2471

scanzio 2471 0.0 0.0 4192 356 pts/2 S 19:29 0:00 ./Pgrm 3
[2]+ Exit 1 ./pgrm 1

AU

[The name changes /

Operating Systems 7 I3

exec system call

% execv[p]

» Uses a single argument: a pointer

= The pointer identifies a vector of pointers to the
parameters (i.e., strings)

= The vector must be properly initialized
O)

char *cmd[] = {
"ls" ,

"-laR",
"o, Last argument must be the
(char *) O NULL pointer

};

execv ("/bin/ls", cmd);
N /

Operating Systems 14

System call exec ()

% exec[lv]e

» Can provide to the executable a set of
environment variables

= Pointer to a vector of pointers (i.e., strings)

= Without “e” the environment of the new process is

inherited from the calling process

/char *env|[] = { A

"USER=unknown",
"PATH=/tmp",
NULL

};

execle (path, arg0, ..., argn, 0, env);

execve (path, argv, env);

Operating Systems i)

Considerations

% Note that during the exec

> all open file descriptors are mantained (including
stdin, stdout, stderr)

» This allow the process to inherit possible
redirections previously set (e.g., by shell)

% Many kernels

» Implement only system call execve

» The other versions are macros that use this system
call

Operating Systems ey § 16

Exercise

<+ Draw the process generation tree of the following
C code segment

» executed passing as its argument on the command
line string "5"

<+ What does it display?
% Why?

Operating Systems

74

|

#include <stdio.h>

#include <unistd.h>
int main (int argc, char ** argv) {
char str[10];
int n;
n = atoi(argv[1l]) - 1;
printf ("%d\n", n);
if (n>0) {
sprintf (str, "%d", n);
execl (argv[0], argv[0], str, NULL),
}
printf ("End!\n");
return 1;

-

Run with n=5

Operating Systems =

y)

P (5) int main (int argc, char ** argv) {
char str[10];
n=4; printf 4 int n;
n = atoi(argv[1l]) - 1;
execC printf ("%d\n", n);
------------------ if (n>0) {

P(4) . sprintf (str, "%d", n);
n=3; pr:l.ntf 3 execl (argv|[0], argv[0], str, NULL);
execC ’

_____________________ printf ("End!\n");

P(3) } return 1;
n=2; printf 2 _ A/
execC

P (2) [Output f b
n=1l; printf 1 ° 4
execC 3

P (1) 2
n=0; printf O 1
printf End! 0

End!

Operating Systems oy 19

<+ Draw the process generation tree of the following
C code segment

» What does it display?
> Why?

L/

o0

L/

0

Operating Systems

20

-

#include <stdio.h>
#include <unistd.h>

int main () {
int n;
n=0;

™

fork #1
If 0 we are in the child; the
child ends immediately

fork #2

while (n<3 && fork()) { If 0 we are in the child; the
if (1fork()) L child does exec

execlp ("echo",
n++;

}

return (1);

}

AV

~

v

"n++", "n", NULL);

printf (] %d\n" ’N

shell command
to print on stdout

L

Operating Systems v 21

~

fork #1 in the while
condition is true only for the

parent, thus it continues,
Cl\\ whereas the child exits

n=1; printf 1 exec; echo n

S fork#2 L

Output
n=2; printf 2 exec; echo n
n=2 Al -~ g .
1
2
n=3; printf 3 exec; echo n 3
___ n
n=
> f Which n
stop order? n

Operating Systems

22

|

<+ Command run in foreground
» <command>

~
while (TRUE) {
write_prompt () ;
read command (command, parameters);
if (fork() == 0)
/* Child: Execute command */
execve (command, parameters);
else
/* Parent: Wait child */
wait (&status);

Operating Systems 23

UNIX shell skeleton

<+ Command run in background
» <command> &

O I
while (TRUE) {
write prompt () ;
read command (command, parameters);
if (fork() == 0)
/* Child: Execute command */
execve (command, parameters);
/* else */
/* Parent: DOES NOT wait */
/* wait (&status); */

Operating Systems | 24

»» It can be useful to execute a shell command
from a process

» For example for appending a date or a hour to a
filename or to a file

% System call system solves this problem

» Defined in the standard ISO C and POSIX

= Although defined by the C standard, it is highly
implementation-dependent

= Tt is always present in UNIX-like systems

Operating Systems 29

system() system call

4)

#include <stdlib.h>

int system (const char *string);
Since it is implemented
with fork, exec and wait
has different termination

% System call system() conditions

-

the shell command

» Returned values
= -1 if fork or waitpid fail (used in its implementation)
= 127 if the exec fails (used in its implementation)

» The exit value of the shell that executed the
command (with the format of waitpid)

Operating Systems 26

4 N\
.« .. Redirection...
system ('"date"); see section u04s07
system ("date > file");

o J

system ("ls -1laR");

char str[L];

strcpy (str, "ls -1la");
system (str);

L

Operating Systems T = 27

system() implementation

2 In initial LINUX versions

» system was implemented by means of
= fork, exec and wait
» They were inefficient
= while ((lastpid=wait(&status)) !'= pid &&
lastpid!=-1);
% Current versions
» usually use the system calls fork, exec and waitpid

Operating Systems

28

|

//Int system (const char *cmd) {

function call

return (status) ;

pid_t pid;
int status;
if (cmd == NULL) Error in fork
return(l) ; The shell must read
if ((pid = fork()) < 0) { from the command
status = -1; line, not from stdin
} else if (pid == 0) {
execl("/bin/sh", "sh", "-e¢", ecmd, (char *) 0);
_exit (127);
} else {
while (waitpid (pid, é&status, 0) < 0)
if (errno !'= EINTR) {
status = -1;
break;
} Options:
} Interrupted WNOHANG

/

Operating Systems — ii 2 29

<+ Draw the process generation tree of the following
C program

» executed passing as its argument on the command
line string "4"

<+ What does it display?
% Why?

Operating Systems

3.

|

“

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main (int argc, char ** argv) {

int n;

char str[10];

n = atoi (argv[l]);

if (n>0) {
printf ("%d\n", n);
sprintf (str, "%$s %d", argv[O0],
system (str);

}

printf ("End!\n") ;

return (1);

n-1);

Run with n=4

Operating Systems 31

Operating Systems oy e

<+ Draw the process generation tree of the following
C code segment

» What does it display?
> Why?

L/

o0

L/

0

Operating Systems

33

|

//;include

int main () {
char str[100];
int 1i;

for (i=0; i<2;

} else {

}

}

return (0);

if (fork ()=
sprintf (str,
execlp ("echo",

i++) {

if (fork () !'=0) {
sprintf (str,
system (str);

"echo system with i=%d",

=0) {
i);
NULL) ;

"exec with 1=%d",
"myPgrm", str,

i);

Operating Systems o | b 34

1=0
i=1 1 /\
P 7
[Output]
------------------------------------- N
i=2 system with i=0
system with i=1
-...| exec with i=1
O ech N th i=ed exec with i=0
echo system wi 1=% . L _
Which system.w:l.t}.l i=1
@ exec echo with i=% order? exec with i=l

(& J

