
Threads

Pthread library
Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

2Operating Systems

Thread libraries

 It provides the programmer the interface to use
the threads

 The most used thread libraries are

 POSIX threads

 C11

 Windows 32/64

 Java

 C++

Implemented at user
and kernel level

Implemented at
kernel-level

Implemented by means of a thread library
of the system hosting Java (Pthread POSIX

or Windows 32/64)

3Operating Systems

Pthreads

 POSIX threads or Pthreads

 Is the standard UNIX library for threads

 POSIX 1003.1c del 1995

 Revised in IEEE POSIX 1003.1 2004 Edition

 Defined for C UNIX, but available

 for other platforms (Linux, Windows, Mac OS, BSD,
Solaris, etc.)

 in other languages (e.g., FORTRAN)

 Its implementation depends on the platform

 In Linux uses normally Native POSIX Thread
Library (NPTL) with threading-model 1x1

1 T uses  1 T kernel

4Operating Systems

Pthreads

 Using Pthreads

 A thread is a function that is executed in
concurrency with the main thread

A process with multiple threads = a set of independently executing
functions that share the process resources

5Operating Systems

Pthreads

 The Pthreads library allows

 Creating and manipulating threads

 Synchronizing threads

 Protection of resources shared by threads

 Thread scheduling

 Destroying thread

 It defines more than 60 functions

 All functions have a pthread_* prefix

 pthread_equal, pthread_self,

pthread_create, pthread_exit,

pthread_join, pthread_cancel,

pthread_detach

6Operating Systems

Library linkage

 The Pthread system calls are defined in

 pthreads.h

 It is necessary to remember
 To insert in the .c files

 #include <pthread.h>

 Compile your program linking the pthread library

 gcc -Wall -g -o <exeName> <file.c> -lpthread

7Operating Systems

Thread Identifier

 A thread is uniquely identified

 By a type identifier pthread_t

 Similar to the PID of a process (pid_t)

 The type pthread_t is opaque

 Its definition is implementation dependent

 Can be used only by functions specifically defined in
Pthreads

 It is not possible compare directly two identifiers or
print their values

 It has meaning only within the process where the
thread is executed

 Remember that the PID is global within the system

8Operating Systems

pthread_equal() system call

int pthread_equal (
pthread_t tid1,
pthread_t tid2

);

 Compares two thread identifiers

 Arguments

 Two thread identifiers

 Returned values

 Nonzero if the two threads are equal

 Zero otherwise

9Operating Systems

pthread_self() system call

pthread_t pthread_self (
void

);

 Returns the thread identifier of the calling thread

 It can be used by a thread (with pthread_equal)

to self-identify

Self-identification can be important to properly
access the data of a specific thread

10Operating Systems

 At the beginning, a program consists of one
process and one thread

 pthread_create allows creating a new thread

 The maximum number of thread that can be
created is undefined and implementation
dependent

pthread_create() system call

pthread_create()

Initial thread

Initial thread

Created thread

11Operating Systems

pthread_create() system call

 Arguments

 Identifier of the generated thread (tid)

 Thread attributes (attr)

 NULL is the default attribute

 C function executed by the thread
(startRoutine)

 Argument passed to the start routine (arg)

 NULL if no argument

int pthread_create (
pthread_t *tid,
const pthread_attr_t *attr,
void *(*startRoutine)(void *),
void *arg

);

A single argument

12Operating Systems

pthread_create() system call

 Returned values

 0 on success

 Error code on failure

int pthread_create (
pthread_t *tid,
const pthread_attr_t *attr,
void *(*startRoutine)(void *),
void *arg

);

13Operating Systems

pthread_exit() system call

 A whole process (with all its threads) terminates if

 Its thread calls exit (or _exit or _Exit)

 The main thread execute return

 The main thread receives a signal whose action is to
terminate

 A single thread can terminate (without affecting
the other process threads)

 Executing return from its start function

 Executing pthread_exit

 Receiving a cancellation request performed by
another thread using pthread_cancel

14Operating Systems

pthread_exit() system call

void pthread_exit (
void *valuePtr

);

 It allows a thread to terminate returning a
termination status

 Arguments

 The ValuePtr value is kept by the kernel until a
thread calls pthread_join

 This value is available to the thread that calls
pthread_join

15Operating Systems

Example

pthread_t tid;
int rc;
rc = pthread_create (&tid, NULL, tF, NULL);
if (rc) {

// Error ...
exit (-1);

}
...
pthread_exit (NULL);
// exit (0);
// return (0); (in main)

void *tF () {
...
pthread_exit (NULL);

}

Terminates only
the main thread

Terminates the
process

(all its threads)

Attributes Arguments

Thread creation
of 1 thread

without
parameters

16Operating Systems

Example

pthread_t th[NUM_THREADS];
int rc, t;

for (t=0; t<NUM_THREADS; t++) {
rc = pthread_create (&th[t], NULL, tF,

(void *) &t);
if (rc) {...}

}
pthread_exit(NULL);

void *tF (void *par) {
int *tidP, tid;
...
tidP = (int *) par;
tid = *tidP;
...
pthread_exit (NULL);

}

Address of t (pointer

to integer)

Creation of N
threads with 1

argument

Collects the tids

17Operating Systems

Example

pthread_t th[NUM_THREADS];
int rc, t;

for (t=0; t<NUM_THREADS; t++) {
rc = pthread_create (&th[t], NULL, tF,

(void *) &t);
if (rc) {...}

}
pthread_exit(NULL);

void *tF (void *par) {
int *tidP, tid;
...
tidP = (int *) par;
tid = *tidP;
...
pthread_exit (NULL);

}

A thread can be
executed when t is

changed

Creation of N
threads with 1

argument

ERROR
&t is the address of a variable,

the main thread changes its content in
concurrency with the created threads

that read its value

The content is
being modified by
the main thread

Buggy

18Operating Systems

Example

pthread_t th[NUM_THREADS];
int rc; long int t;

for (t=0; t<NUM_THREADS; t++) {
rc = pthread_create (&th[t], NULL, fF,

(void *) t);
if (rc) { ... }

}
pthread_exit (NULL);

void *tF (void *par) {
long int tid;
...
tid = (long int) par;
...
pthread_exit(NULL);

}

Cast of a value
void * ↔ long int

Creation of N
threads with 1

argument

Tricky:
We pass a long int as it were an
address, because pthread_create

requires an address as its last argument

Dirty

19Operating Systems

Example

int tA[NUM_THREADS];
for (t=0; t<NUM_THREADS; t++) {

tA[t] = t;
rc = pthread_create (&th[t], NULL, tF,

(void *) &tA[t]);
if (rc) { ... }

}
pthread_exit (NULL);

void *tF (void *par) {
int *tid, taskid;
...
tid = (int *) par;
taskid = *tid;
...
pthread_exit(NULL);

}

Cast of a vector of
pointers

void * ↔ int

Creation of N
threads with 1

argument

The pointer to a
vector element

OK

20Operating Systems

Example

pthread_t t[NUM_THREADS];
struct tS v[NUM_THREADS];
...
for (t=0; t<NUM_THREADS; t++) {
v[t].tid = t;
strcpy (v[t].str, str);
rc = pthread_create (&t[t], NULL, tF, (void *) &v[t]);
...
}

...

void *tF (void *par) {
struct tS *tD;
int tid; char str[L];

tD = (struct tS *) par;
tid = tD->tid; strcpy (str, tD->str);
...

struct tS {
int tid;
char str[N];

};

Cast to a vector
of structs

Creation of N
threads with 1

struct

Address of a struct

OK

21Operating Systems

pthread_join() system call

 At its creation a thread can be declared

 Joinable

 Another thread may "wait" (pthread_join) for its

termination, and collect its exit status

 Detached

 No thread can explicitly wait for its termination (not
joinable)

22Operating Systems

pthread_join() system call

 If a thread

 is joinable, its termination status is retained until
another thread performs a pthread_join for

that thread

 is detached its termination status is immediately
released

 In any case

 A thread calling pthread_join waits until the
required thread calls phread_exit

23Operating Systems

pthread_join() system call

int pthread_join (
pthread_t tid,
void **valuePtr

);

 Used by a thread to wait the termination of
another thread

Thread 1

pthread_join () pthread_exit ()

Thread 2

24Operating Systems

pthread_join() system call

int pthread_join (
pthread_t tid,
void **valuePtr

);

 Arguments

 Identifier (tid) of the waited-for thread

 The void pointer ValuePtr will obtain the value
returned by thread tid

 Returned by pthread_exit

 Returned by return

 PTHREAD_CANCELED if the thread was deleted

valuePtr can be set to NULL if you
are not interested in the return value

25Operating Systems

pthread_join() system call

int pthread_join (
pthread_t tid,
void **valuePtr

);

 Returned values

 0 on success

 Error code on failure

 If the thread was detached pthread_join should

fail

● Depends on the OS and timing, it may also terminate
correctly

 If it fails, it returns the constant EINVAL or ESRCH

26Operating Systems

Example

void *status;
long int s;
...
/* Wait for threads */
for (t=0; t<NUM_THREADS; t++) {

rc = pthread_join (th[t], &status);
s = (long int) status;
if (rc) { ... }

}
...

void *tF (void *par) {
long int tid;
...
tid = (long int) par;
...
pthread_exit ((void *) tid);

}

Waits each thread,
and collects its exit

status

Returns the exit status
(tid in this example)

th[t] collects the tids

27Operating Systems

Example

int myglobal;

void *threadF (void *arg) {
int *argc = (int *) arg;
int i, j;
for (i=0; i<20; i++) {

j = myglobal;
j = j + 1;
printf ("t");
if (*argc > 1) sleep (1);
myglobal = j;

}
printf ("(T:myglobal=%d)", myglobal);
return NULL;

}

The global variable is
incremented by means

of a copy on j

The thread can sleep
or not

 Use of a global variable common to many threads

28Operating Systems

Example 2

int main (int argc, char *argv[]) {
pthread_t mythread;
int i;
pthread_create (&mythread, NULL, threadF, &argc);
for (i=0; i<20; i++) {

myglobal = myglobal + 1;
printf ("m");
sleep (1);

}
pthread_join (mythread, NULL);
printf ("(M:myglobal=%d)", myglobal);
exit (0);

}

29Operating Systems

Example 2

> ./pgrm
mtttttttttttttttttttt(T:myglobal=21)mmmmmmmmmmmmmmmmmm
m(M:myglobal=40)

If thread executes immediately
No loss of increments

> ./pgrm 1
mttmttmttmttmttmttmttmttmttmttm(T:myglobal=21)mmmmmmmm
m(M:myglobal=30)

2sec waiting for the main thread
Only some increments are lost

> ./pgrm 1
mt(T:myglobal=21)
M:myglobal=21)

Thread and main thread alternates their execution
every second. The increments of the thread are lost

30Operating Systems

pthread_cancel() system call

int pthread_cancel (
pthread_t tid

);

 Terminates the target thread

 The effect is similar to a call to
pthread_exit(PTHREAD_CANCELED)

performed by the target thread

 The thread calling pthread_cancel does not

wait for termination of the target thread (it
continues immediately after the calling)

31Operating Systems

pthread_cancel() system call

int pthread_cancel (
pthread_t tid

);

 Arguments

 Target thread (tid) identifier

 Returned values

 0 on success

 Error code on failure

32Operating Systems

pthread_detach() system call

int pthread_detach (
pthread_t tid

);

 Declares thread tid as detached

 The status information will not be kept by the
kernel at the termination of the thread

 No thread can join with that thread

 Calls to pthread_join should fail with error

code EINVAL or ESRCH

The attribute of the
pthread_create allows

and alternative way to
create a detached thread

33Operating Systems

pthread_detach() system call

int pthread_detach (
pthread_t tid

);

 Arguments

 Thread (tid) identifier

 Returned values

 0 on success

 Error code on failure

34Operating Systems

Example

pthread_t tid;
int rc;
void *status;

rc = pthread_create (&tid, NULL, PrintHello, NULL);
if (rc) { ... }

pthread_detach (tid);

rc = pthread_join (tid, &status);
if (rc) {

// Error
exit (-1);

}

pthread_exit (NULL);

Detach a thread

Error if try to join

 Create a thread and then make it detached

35Operating Systems

Example

pthread_attr_t attr;
void *status;

pthread_attr_init (&attr);
pthread_attr_setdetachstate (&attr,

PTHREAD_CREATE_DETACHED);
//PTHREAD_CREATE_JOINABLE);

rc = pthread_create (&t[t], &attr, tF, NULL);
if (rc) {...}

pthread_attr_destroy (&attr);

rc = pthread_join (thread[t], &status);
if (rc) {

// Error
exit (-1);

}

Creates a detached
thread

Destroys the attribute
object

Error if try to join

 Create a thread using the attribute of the
pthread_create()

36Operating Systems

Exercise

 Implement, using threads, this precedence graph

A

F

C

D

B

G

E

37Operating Systems

Solution

void waitRandomTime (int max){
sleep ((int)(rand() % max) + 1);

}

int main (void) {
pthread_t th_cf, th_e;
void *retval;

srand (getpid());
waitRandomTime (10);
printf ("A\n");

A

F

C

D

B

G

E

38Operating Systems

Solution

waitRandomTime (10);
pthread_create (&th_cf, NULL, CF, NULL);
waitRandomTime (10);
printf ("B\n");
waitRandomTime (10);
pthread_create (&th_e, NULL, E, NULL);
waitRandomTime (10);
printf ("D\n");
pthread_join (th_e, &retval);
pthread_join (th_cf, &retval);
waitRandomTime (10);
printf ("G\n");
return 0;

}

A

F

C

D

B

G

E

39Operating Systems

Solution

static void *CF () {
waitRandomTime (10);
printf ("C\n");
waitRandomTime (10);
printf ("F\n");
return ((void *) 1); // Return code

}
static void *E () {

waitRandomTime (10);
printf ("E\n");
return ((void *) 2); // Return code

}

A

F

C

D

B

G

E

40Operating Systems

Exercise

A

E

C

B

I

F

D

H

G

 Implement, using threads, this precedence graph

41Operating Systems

Exercise

 Given a text file, with an undefined number of
characters, passed as an argument of the
command line

 Implement a concurrent program using three
threads (T1, T2, T3) that process the file content
in pipeline

 T1: Read from file the next character

 T2: Transforms the character read by T1 in
uppercase

 T3: Displays the character produced by T2 on
standard output

42Operating Systems

Solution

 Implement, using threads, this precedence graph

main

main

T2T1 T3

Reading,
transformation, and

visualization in parallel

GET next
UPDATE this
PRINT last

For now, the only
synchronization strategy
is to use pthread_join()

T are created and
destroyed at each

iteration

43Operating Systems

Solution

static void *GET (void *arg) {
char *c = (char *) arg;
*c = fgetc (fg);
return NULL;

}
static void *UPD (void *arg) {

char *c = (char *) arg;
*c = toupper (*c);
return NULL;

}
static void *PRINT (void *arg) {

char *c = (char *) arg;
putchar (*c);
return NULL;

}

44Operating Systems

Solution

FILE *fg;

int main (int argc, char ** argv) {
char next, this, last;
int retC;
pthread_t tGet, tUpd, tPrint;
void *retV;

if ((fg = fopen(argv[1], "r")) == NULL){
perror ("Error fopen\n");
exit (0);

}
this = ' ';
last = ' ';
next = ' ';

45Operating Systems

Solution

while (next != EOF) {
retC = pthread_create (&tGet, NULL, GET, &next);
if (retC != 0) fprintf (stderr, ...);
retC = pthread_create (&tUpd, NULL, UPD, &this);
if (retC != 0) fprintf (stderr, ...);
retC = pthread_create (&tPrint, NULL, PRINT, &last);
if (retcode != 0) fprintf (stderr, ...);
retC = pthread_join (tGet, &retV);
if (retC != 0) fprintf (stderr, ...);
retC = pthread_join (tUpd, &retV);
if (retC != 0) fprintf (stderr, ...);
retC = pthread_join (tPrint, &retV);
if (retC != 0) fprintf (stderr, ...);
last = this;
this = next;

}

The first two characters
can be managed

separately

46Operating Systems

Solution

// Last two chars processing
retC = pthread_create(&tUpd, NULL, UPD, &this);
if (retC!=0) fprintf (stderr, ...);
retC = pthread_create(&tPrint, NULL, PRINT, &last);
if (retC != 0) fprintf (stderr, ...);
retC = pthread_join (tUpd, &retV);
if (retC != 0) fprintf (stderr, ...);
retC = pthread_join (tPrint, &retV);
if (retC != 0) fprintf (stderr, ...);
retC = pthread_create(&tPrint, NULL, PRINT, &this);
if (retC != 0) fprintf (stderr, ...);
return 0;

}

Management of the last
two characters (queue)

47Operating Systems

 Can the previous solution be considered efficient?

 No, as the 3 threads are created from scratch at
each iteration

 Alterative solution

 Create T1, T2 and T3 as cyclic threads, which are
able to synchronize with the others at each iteration

Considerations

main

T2
T1

main

T3

48Operating Systems

Exercises

 Some other exercises about threads

 https://www.skenz.it/cs/posix/threads

