Threads

Pthread library
Stefano Quer, Pietro Laface, and Stefano Scanzio
Dipartimento di Automatica e Informatica
Politecnico di Torino
skenz.it/os stefano.scanzio@polito.it

Operating Systems | 2

Thread libraries

% It provides the programmer the interface to use
the threads
%+ The most used thread libraries are
> POSIX threads ———— Implemented at user }
> C11 L and kernel level
> Windows 32/64

- Java Impl ted at
mplemented a
> C+/-k kernel-level }
N

Implemented by means of a thread library
of the system hosting Java (Pthread POSIX
or Windows 32/64)

-)

Operating Systems 7 3

Pthreads

+» POSIX threads or Pthreads

» Is the standard UNIX library for threads
= POSIX 1003.1c del 1995
= Revised in IEEE POSIX 1003.1 2004 Edition
%+ Defined for C UNIX, but available

» for other platforms (Linux, Windows, Mac OS, BSD,
Solaris, etc.)

» in other languages (e.g., FORTRAN)
% Its implementation depends on the platform

> In Linux uses normally Native POSIX Thread
Library (NPTL) with threading-model 1x1

[1 Tuses - 1T kernel

Operating Systems . | s

Pthreads

% Using Pthreads

> A thread is a function that is executed in
concurrency with the main thread

N

L A process with multiple threads = a set of independently executing }

functions that share the process resources

Operating Systems 1= 9

Pthreads

% The Pthreads library allows
» Creating and manipulating threads
» Synchronizing threads
> Protection of resources shared by threads
» Thread scheduling
» Destroying thread

«» It defines more than 60 functions
> All functions have a pthread_* prefix

= pthread_equal, pthread_self,
pthread_create, pthread exit,
pthread join, pthread_cancel,
pthread detach

Operating Systems - | 6

Library linkage

% The Pthread system calls are defined in
» pthreads.h
% It is necessary to remember
» To insert in the .c files
" #include <pthread.h>
» Compile your program linking the pthread library
= gcc -Wall -g -0 <exeName> <file.c> -1pthread

Operating Systems 1= /A

Thread Identifier

% A thread is uniquely identified
> By a type identifier pthread_t
= Similar to the PID of a process (pid_t)
» The type pthread t is opaque
= Jts definition is implementation dependent

= Can be used only by functions specifically defined in
Pthreads

= [t is not possible compare directly two identifiers or
print their values

» It has meaning only within the process where the
thread is executed

= Remember that the PID is global within the system

Operating Systems 8

pthread_equal() system call

C)

int pthread_equal (
pthread t tidl,
pthread t tid2

) ;

A J

<+ Compares two thread identifiers
< Arguments

» Two thread identifiers
% Returned values

» Nonzero if the two threads are equal
» Zero otherwise

Operating Systems =

pthread_self() system call

C)

pthread_t pthread _self (
void

) ;

A J

% Returns the thread identifier of the calling thread
» It can be used by a thread (with pthread equal)

to self-identify N

Self-identification can be important to properly
access the data of a specific thread

Operating Systems L § e 10

‘e

pthread_create() system call

% At the beginning, a program consists of one
process and one thread

% pthread_ create allows creating a new thread

» The maximum number of thread that can be
created is undefined and implementation
dependent

Initial thread
pthread create()

Initial thread Created thread

Operating Systems 11

pthread_create() system call

~
[int pthread_create (

pthread t *tid,

const pthread attr_t *attr,
void * (*startRoutine) (void *),
void *arg

) ;

A J

< Arguments
» Identifier of the generated thread (tid)
» Thread attributes (attr)
= NULL is the default attribute

> C function executed by the thread wn/gle argument]

(startRoutine)

» Argument passed to the start routine (arg)
= NULL if no argument

Operating Systems | 12

pthread_create() system call

/int pthread_create ()

pthread t *tid,

const pthread attr_t *attr,
void * (*startRoutine) (void *),
void *arg

) ;

A J

+» Returned values
» 0 on success
» Error code on failure

Operating Systems I3

pthread_exit() system call

< A whole process (with all its threads) terminates if
> Its thread calls exit (or _exit or _Exit)

» The main thread execute return

» The main thread receives a signal whose action is to
terminate

% A single thread can terminate (without affecting
the other process threads)
» Executing return from its start function

» Executing pthread_exit

» Receiving a cancellation request performed by
another thread using pthread_cancel

Operating Systems 14

pthread_exit() system call

C)

void pthread exit (
void *valuePtr

) ;

A J

% It allows a thread to terminate returning a
termination status

< Arguments

» The valuePtr value is kept by the kernel until a
thread calls pthread_join

» This value is available to the thread that calls
pthread_join

Operating Systems

15

p

Thread creation
of 1 thread
without
parameters

void *tF () {

pthread exit (NULL);
}

| AttributesJ LArggments |

C _ N / N
pthread_t tid;
int rc;
rc = pthread_create (&tid, NULL, tF, NULL);
if (rec) {
// Error ...
exit (-1); Terminates only
} the main thread
0 . ™~
%h:iig—?g)lt (NULL) ; // Terminates the
// return (0); (in main) Process

| _
(all its threads) y

Operating Systems

[

Creation of N
threads with 1
argument

/
void *tF (void *par) {
int *tidP, tid;

tidP = (int *) par;
tid = *tidP;

pthread exit (NULL);

Collects the tids }

N

pthread t th[NUM_THREADS],;
int rc, t;

for (t=0; t<NUM THREADS; t++) {
rc = pthread create (&th[t], NULL, tF,
(void *) &t);
) it (xe) {...} Address of t (pointer

KPthread._exit(NULL); to integer)

AN

Operating Systems 74

|

Creation c_)f N void *tF (void *par) {
threads with 1
t int *tidP, tid;
argumen

tidP = (int * ; _
tid = *&gp;) e The content is
being modified by

A thread can be ;.Dt:,}.wead_exit (NULL) , the main thread

executed when t is

changed \} ‘
Buggy
pthread t th[NUM_ THREADS];
int rc, t;
for (t=0; t<NUM_THREADS; t++) {
rc = pthread create (&th[t], NULL, tF,
(void *) &t); ERROR
if (rec) {...} &t is the address of a variable,
} _ the main thread changes its content in
\Pthread—e"lt (NULL) ; concurrency with the created threads

that read its value

Operating Systems

18

[

Creation of N
threads with 1
argument

Cast of a value
void * <« long int

p

void *tF (void *par) {

}

-

long int tid;
tid = (long int) par;

pthread exit (NULL);

(
pthread_t th[NUM_THREADS];

int rc; long int t;

Dirty

for (t=0; t<NUM THREADS; t++) {
rc = pthread create (&th[t], NULL, f£fF,

(void *) t):

if (re) {
}

pthread exit (NULL);

&

}

Tricky:
We pass a 1long int as it were an
address, because pthread_create

requires an address as its last argument

Operating Systems

19

[

-

Creation (_)fN void *tF (void *par)
threads with 1 int *tid, taskid;
argument .
tid = (int *) par;
taskid = *tid;
Cast of a vector of .
pointers pthread_exit (NULL) ;
void * < int }
-
OK
int tA[NUM THREADS];
for (t=0; t<NUM THREADS; t++) {
tA[t] = t;
rc = pthread create (&th[t], NULL, tF,
(void *) &tA[t]);
if (re) {
} The pointer to a
pthread exit (NULL); vector element

(&

Operating Systems 20

|

Creation of N e L A
threads with 1 V°:gru2§ é§°i‘iD,Par) { Cast to a vector
struct T e R IT of structs
[struct tS {) tD = (struct tS *) par;
int tid; tid = tD->tid; strcpy (str, tD->str);
char str[N]; . ..
b)\ J
f
OK

pthread_t t [NUM THREADS],;
struct tS v[NUM THREADS],;

for (t=0; t<NUM_THREADS; t++) {
vit].tid = t;

strepy (v[t].str, str);
rc = pthread create (&t[t], NULL, tF, (void *) &v[t]);

" Address of a struct

Operating Systems | 21

pthread_join() system call

»» At its creation a thread can be declared

» Joinable
= Another thread may "wait" (pthread_join) for its
termination, and collect its exit status
» Detached

= No thread can explicitly wait for its termination (not
joinable)

Operating Systems . 117= 22

pthread_join() system call

» If a thread

> is joinable, its termination status is retained until
another thread performs a pthread_join for

that thread

> is detached its termination status is immediately
released

< In any case

> A thread calling pthread_join waits until the
required thread calls phread_exit

Operating Systems - 23

pthread_join() system call

C)

int pthread join (
pthread t tid,
void **valuePtr

) ;

A J

% Used by a thread to wait the termination of
another thread

Thread 1 Thread 2
pthread_join () pthread_exit ()

Operating Systems 24

pthread_join() system call

C)

int pthread join (
pthread_t tid,
void **valuePtr

) ;
L (valuePtr can be set to NULL if you
| are not interested in the return value

< Arguments
> Identifier (tid) of the waited-for thread

» The void pointer valuePtr will obtain the value
returned by thread tid
= Returned by pthread_exit
= Returned by return
= PTHREAD CANCELED if the thread was deleted

Operating Systems i~ 25

pthread_join() system call

C)

int pthread join (
pthread t tid,
void **valuePtr

) ;

A J

+» Returned values
» 0 on success

» Error code on failure
= If the thread was detached pthread_join should
fail
e Depends on the OS and timing, it may also terminate
correctly

= If it fails, it returns the constant EINVAL or ESRCH

Operating Systems 26

4 I
void *tF (void *par) {

long int tid;
Returns the exit status A
(tid in this example) tid = (long int) par;

~ pthread _exit ((void *) tid);
}
o

)
B

void *status;
long int s; th[t] collects the tids}

/* Wait for threads */
for (t=0; t<NUM_THREADS; t++) {
rc = pthread join (th[t], &status);

s = (long int) status; Waits each thread, |

1f (re) { ...} and collects its exit

}
status
o Y

Operating Systems (4 A

|

< Use of a global variable common to many threads

N

int myglobal;

void *threadF (void *argqg) ({

int *argc = (int *) arg;

int 1, 3J; _ The global variable is

for (i=0; 1<20; i++) { incremented by means
J = myglobal; of a copy on 3
j=3+1;
printf ("t"),;
if (*argc > 1) sleep (1); The thread can sleep
myglobal = j; or not

}
printf (" (T:myglobal=%d)", myglobal);

return NULL;

an
U

Operating Systems

28

|

e

int main (int argc, char *argv|[]) {
pthread_t mythread;
int 1;
pthread create (&mythread, NULL, threadF,
for (i=0; i<20; i++) {
myglobal = myglobal + 1;
printf ("m");
sleep (1);
}
pthread_join (mythread, NULL);
printf (" (M:myglobal=%d)", myglobal);
exit (0);

&argce) ;

Operating Systems 29

[If thread executes immediately

No loss of increments

> ./pgrm
mtttttttttttttttttttt (T:myglobal=21) mmmmmmmmmmmmmmmmmm
m(M:myglobal=40)

(& J

Thread and main thread alternates their execution
every second. The increments of the thread are lost

> ./pgrm 1
mt (T :myglobal=21)
M:myglobal=21)

& J

2sec waiting for the main thread
Only some increments are lost

> ./pgrm 1
mttmttmttmttmttmttmttmttmttmttm (T : myglobal=21) mmmmmmmm
m (M:myglobal=30)

(& J

Operating Systems 30

pthread_cancel() system call

C)

int pthread_cancel (
pthread t tid

) ;

A\ J

% Terminates the target thread

> The effect is similar to a call to
pthread exit (PTHREAD_ CANCELED)

performed by the target thread
% The thread calling pthread cancel does not

wait for termination of the target thread (it
continues immediately after the calling)

Operating Systems e 31

A

pthread_cancel() system call

C)

int pthread_cancel (
pthread_ t tid

) ;

A J

< Arguments
» Target thread (tid) identifier
% Returned values

» 0 on success
> Error code on failure

Operating Systems e

pthread_detach() system call

C)

int pthread _detach (The attribute of the
pthread_t_t id pthread create allows

) ; and alternative way to
_Create a detached thread y

A J

*+» Declares thread tid as detached

» The status information will not be kept by the
kernel at the termination of the thread

» No thread can join with that thread

» Calls to pthread_join should fail with error
code EINVAL or ESRCH

Operating Systems U e 39

pthread_detach() system call

C)

int pthread_detach (
pthread_ t tid

) ;

A J

< Arguments
» Thread (tid) identifier
% Returned values

» 0 on success
> Error code on failure

Operating Systems 34

|

*+» Create a thread and then make it detached

//;thread;t tid; B
int rc;
void *status;

rc = pthread create (&tid, NULL, PrintHello, NULL);
if (re) { ... }

Detach a thread
pthread detach (tid);

rc = pthread_join (tid, &status);

if (rec) {
// Error ; i0i
exit (-1): Error if try to join

}

thread exit (NULL);

& /

Operating Systems 32

|

% Create a thread using the attribute of the
pthread_create()

pthread_attr_t attr; \\
void *status;

pthread attr init (&attr);

pthread attr setdetachstate (&attr,
PTHREAD CREATE DETACHED) ;
//PTHREAD CREATE JOINABLE) ;

Creates a detached
thread

rc = pthread create (&t[t], &attr, tF, NULL),;

P -
if (re) {...} Destroys the attribute

pthread_attr_destroy (&attr); object
rc = pthread join (thread[t], &status);
if (rec) {

// Error : .

exit (-1); Error if try to join

V! /

o
Operating Systems j— lii 36

% Implement, using threads, this precedence graph

Operating Systems 37

- N

void waitRandomTime (int max) {
sleep ((int) (rand() % max) + 1);

}

int main (void) {
pthread t th cf, th_e;
void *retval;

srand (getpid());
waitRandomTime (10);
printf ("A\n");

Operating Systems

38

|

-

waitRandomTime (10);
pthread create (&th_cf, NULL, CF, NULL),
waitRandomTime (10);

printf ("B\n");

waitRandomTime (10);

pthread create (&th_e, NULL, E, NULL);
waitRandomTime (10);

printf ("D\n");

pthread join (th_e, é&retval);
pthread join (th_cf, &retval);
waitRandomTime (10);

printf ("G\n");

return O;

Operating Systems S5

|

Ve N

static void *CF () {

waitRandomTime (10);

printf ("C\n");

waitRandomTime (10);

printf ("F\n");

return ((void *) 1); // Return code
}
static void *E () {

waitRandomTime (10);

printf ("E\n");

return ((void *) 2); // Return code

}

¥

Operating Systems oy 40

% Implement, using threads, this precedence graph

Operating Systems 41

% Given a text file, with an undefined number of
characters, passed as an argument of the
command line

< Implement a concurrent program using three
threads (T,, T,, T3) that process the file content
in pipeline
» T,: Read from file the next character

» T,: Transforms the character read by T, in
uppercase

» T5: Displays the character produced by T, on
standard output

Operating Systems | 42

% Implement, using threads, this precedence graph
Reading,
transformation, and
visualization in parallel
/ GET next
UPDATE this

PRINT last

main

destroyed at each

T are created and
iteration

synchronization strategy
is to use pthread_join()

For now, the only J

Operating Systems

43

|

-

static void *GET (void *arg) {
char *c = (char *) arg;
*c = fgetc (fqg);
return NULL,

}
static void *UPD (void *arg) {

char *c = (char *) arg;
*c = toupper (*c);
return NULL,;

}
static void *PRINT (void *arg) {

char *c = (char *) arg;
putchar (*c);
return NULL,

}

(&

Operating Systems

44

|

-

FILE *fg;

char next, this, last;

int ret(C;

pthread t tGet, tUpd, tPrint;
void *retV;

if ((£fg = fopen(argv[1l], "r"))
perror ("Error fopen\n");
exit (0);

}

this ;

last Y

next S

int main (int argc, char ** argv) {

NULL) {

Operating Systems

45

[The first two characters

can be managed

separately
while (next !'= EOF) ({

if (retC !'= 0) fprintf (stderr, ...);

if (retC != 0) fprintf (stderr, ...);
retC = pthread_ create (&tPrint, NULL, PRINT,
if (retcode !'= 0) fprintf (stderr, ...);
retC = pthread_join (tGet, &retV);

if (retC !'= 0) fprintf (stderr, ...);
retC = pthread_join (tUpd, &retV);

if (retC !'= 0) fprintf (stderr, ...);
retC = pthread_ join (tPrint, &retV);

if (retC != 0) fprintf (stderr, ...);
last = this;

this = next;

(=

retC = pthread_ create (&tGet, NULL, GET, é&next);

retC = pthread_create (&tUpd, NULL, UPD, &this);

N

&last) ;

Operating Systems

46

|

Management of the last

two characters (queue)

-

// Last two chars processing

retC = pthread_create (&tUpd, NULL, UPD, &this);

if (retC!=0) fprintf (stderr, ...);

retC = pthread_create (&tPrint, NULL, PRINT,
if (retC != 0) fprintf (stderr, ...);

retC = pthread_join (tUpd, &retV);

if (retC !'= 0) fprintf (stderr, ...);

retC = pthread_join (tPrint, &retV);

if (retC !'= 0) fprintf (stderr, ...);

retC = pthread_create (&tPrint, NULL, PRINT,
if (retC !'= 0) fprintf (stderr, ...);

return O;

N

&last);

&this) ;

)

Operating Systems ey § 47

Considerations

%+ Can the previous solution be considered efficient?

» No, as the 3 threads are created from scratch at
each iteration
> Alterative solution

= Create T,, T, and T; as cyclic threads, which are
able to synchronize with the others at each iteration

Operating Systems 4, . 48

“» Some other exercises about threads
> https://www.skenz.it/cs/posix/threads

