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Introduction

 The previous solutions are not satisfactory, 
because

 software solutions are complex to use from the 
point of view of the programmer

 hardware solutions are difficult to implement from 
the point of view of the hardware designer

 OSs provide more appropriate primitives called 
semaphores

 Introduced by Dijkstra in 1965

 They are not based on busy waiting 
implementation, and therefore they do not waste 
resources
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Definition

 A semaphore S is a shared structure including

 A counter

 A waiting queue, managed by the kernel

 Both protected by a lock

 Operations on S are atomic

 Atomicity is managed by the OS

 It is impossible for two threads to perform 
simultaneous operations on the same semaphore

typedef struct semaphore_tag {
char lock; // Lock variable protects count

// and queue management
int cnt;            // Counter
process_t *head;    // Thread list

} semaphore_t;
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Definition

 A semaphore S is

 An integer shared variable

 Protected by the operating system

 Usable for mutual exclusion and synchronization

 Operation on S are always executed in an atomic 
way

 The atomicity is guaranteed by the operating 
system

 It is impossible for two processes to execute 
concurrent operations on the same semaphore

Shared object, of integer 
type, which behaves as 

a shared counter
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Manipulation functions

 Typical operations on a semaphore S

 init (S, k)

 Defines and initializes the semaphore S to the value k

 wait (S)

 Allows (in the reservation code) to obtain the access 
of the CS protected by the semaphore S

 signal (S)

 Allows (in the release code) to release the CS 
protected by the semaphore S

 destroy (S)

 Frees the semaphore S

sleep, down, P

wakeup, up, V

They are not the "wait" and 
"signal" seen in the past
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Semaphore primitives

 init(S, k)

 Defines and initializes semaphore S to value k

 Two types of semaphores

 Binary semaphores

● The value of k is only 0 or 1

 Counting semaphores

● The value of k is non negative

known as "mutex lock" 
(mutex ≡ MUTual EXclusion)

k is a counter

init (S, k) {
alloc (S);
S=k;

}

Logical implementation

Atomic operation
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Semaphore primitives

 wait(S)

 If the counter value of S is negative or zero blocks 

the calling T/P

 If S is negative, its absolute value |S| indicates the 
number of waiting threads

 The counter is decremented at each call

wait (S) {
while (S<=0);
S--;

}

Logical implementation

Atomic 
operation

wait (S) {
if (S==0) block();
else S--;

}

Other possible (and equivalent) 
logical implementationIn the logical versions 

S is always positive

Real implementations do 
not use busy waiting
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Semaphore primitives

 wait(S)

 Originally called P() from the Dutch language 

"probeer te verlagen", i.e., "try to decrease"

 Not to be confused with the wait system call used 
to wait for a child process

wait (S) {
while (S<=0);
S--;

}

Logical implementation

Atomic 
operation

wait (S) {
if (S==0) block();
else S--;

}

Other possible (and equivalent) 
logical implementationIn the logical versions 

S is always positive

Real implementations do 
not use busy waiting
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Semaphore primitives

 signal(S)

 Increases the semaphore S

 If S counter is negative or zero some T/P was 

blocked on the semaphore queue, and it can be 
wakeup

 Originally called V(), from the Dutch language 

"verhogen", i.e., "to increment"

 Not to be confused with system call signal that 
is used to declare a signal handler

signal (S) {
if (blocked())

wakeup();
else S++;

}

signal (S) {
S++;

}

Logical 
implementation

Atomic operation
(register=s;register++;s=register;)

Other possible (and equivalent) 
logical implementation
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Semaphore primitives

 destroy(S)

 Release semaphore S memory

 Actual implementations of a semaphore require 
much more of a simple global variable to define a 
semaphore 

 This function is often not used in the examples

destroy (S) {
free (S);

}

Logical 
implementation
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Semaphore primitives

 The semaphore queue

 Is implemented in kernel space by means of a 
queue of Thread Control Blocks

 The kernel scheduler decides the queue 
management strategy (not necessarily FIFO)
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while (TRUE) {
wait (S);
CS
signal (S);
non critical section

}

while (TRUE) {
wait (S);
CS
signal (S);
non critical section 

}

Pi / Ti Pj / Tj

Mutual exclusion with semaphore

init (S, 1);

Remember:

wait (S) {
if (S==0) block();
else S--;

}
signal (S) {
if (blocked())
wakeup();

else S++;
}
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Critical sections of N threads

init (S, 1);
...
wait (S);
CS 
signal (S);

T1 T2 T3 S queue

1

wait 0

CS1 wait -1 T2

b
lo

ck
e
d wait -2 T2, T3

b
lo

ck
e
d

-2 T2, T3

signal -2 T2, T3

CS2 -1 T3

signal 0

CS3 0

signal 1

At most one T/P 
at a time in the 
critical section
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Critical sections of N threads

init (S, 2);
...
wait (S);
CS
signal (S);

T1 T2 T3 S queue

2

wait 1

CS1 wait 0

CS2 wait -1 T3

b
lo

ck
e
d -1 T3

signal 0

CS3 0

signal 1

signal 2

Threads 1 and 2 in 
their CSs

Threads 2 and 3 in 
their CSs

At most two T/P 
at a time in the 
critical section
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Synchronization with semaphores

 The use of semaphores is not limited to the 
Critical Section access protocol

 Semaphores can be used to solve any 
synchronization problem using

 An appropriate positioning of semaphores in the 
code

 Possibly, more than one semaphore

 Possibly, additional shared variables
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Pure synchronization: Example 1

 Obtain a specific order of execution

 Ti executes code A before Tj executes code B

init (S, 0);

……
wait (S);
B;
……

……
A;
signal (S);
……

Ti Tj

A

…..

…..

B

…..

…..

Ti Tj
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while (TRUE) {
wait (S1);
process data
signal (S2);
...

}

Pure synchronization: Example 2

while (TRUE) {
prepare data 
signal (S1);
wait (S2);
get processed data

}

 Synchronize two T/P so that

 Tj waits Ti

 then, Ti waits Tj

 It is a client-server schema

init (S1, 0);
init (S2, 0);

Ti / Pi Tj / Pj
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B;
signal (S);

Pure synchronization : Example 3

A;
wait (S);
C;

 Implement this precedence graph

init (S, 0);

BA

CTi

Tj

Ti Tj
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Pure synchronization : Example 3

A;
signal (S);

 Other possible solution involving 3 P/T

init (S, 0);

BA

C

Ti Tj

Ti

Tk

wait (S);
wait (S);
C;

Tk B;
signal (S);

Tj
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Pure synchronization : Example 4

PnP2

Pn+1

P0

P1
...

P0
for(i=1;i<=n;i++)

signal (S1);
...

init (S1, 0);
init (S2, 0);

...
for(i=1;i<=n;i++)

wait (S2);
Pn+1

wait (S1);

Pi
signal (S2);
...

P0/T0 Pn+1/Tn+1Pi/Ti

 Implement this precedence graph

cobegin-coend
(concurrent begin-end)

Note: These threads 
are not cyclic

S1

S2
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Errors using semaphores: Example 1

 Just a single thread is incorrect

Enters its CS and makes possible that 
the two other threads enter their CSs

while (TRUE) {
...
signal (S); !!
CS1
wait (S);   !!
...

}

T1 T2

while (TRUE) {
...
wait (S);
CS3
signal (S);
...

}

T3

while (TRUE) {
...
wait (S);
CS2
signal (S);
...

}

init (S, 1);
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Errors using semaphores: Example 2

 Just a single thread is incorrect

When the second wait is executed all 
thread are in deadlock

while (TRUE) {
...
wait (S);
CS1
wait (S);  !!
...

}

T1 T2

while (TRUE) {
...
wait (S);
CS3
signal (S);
...

}

T3

while (TRUE) {
...
wait (S);
CS2
signal (S);
...

}

init (S, 1);
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Errors using semaphores: Example 3

 Just a single thread is incorrect

When the first signal is executed, two threads can enter their CSs. 
When the second signal is executed, all threads can enter their CSs.

while (TRUE) {
...
signal(S); !!
CS1
signal(S); 
...

}

T1 T2

while (TRUE) {
...
wait (S);
CS3
signal (S);
...

}

T3

while (TRUE) {
...
wait (S);
CS2
signal (S);
...

}

init (S, 1);
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Errors using semaphores: Example 4

 Just a single thread is incorrect

After T1 exit its CS, all 
threads will be in deadlock

while (TRUE) {
...
wait(S);
CS1
!! no signal(S) 
...

}

T1 T2

while (TRUE) {
...
wait (S);
CS3
signal (S);
...

}

T3

while (TRUE) {
...
wait (S);
CS2
signal (S);
...

}

init (S, 1);

If T3 is fast, all threads can 
enter their CSs
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Errors using semaphores: Example 5

 Just a single thread is incorrect

while (TRUE) {
...
!! no wait(S);
CS1
signal (S);
...

}

T1 T2

while (TRUE) {
...
wait (S);
CS3
signal (S);
...

}

T3

while (TRUE) {
...
wait (S);
CS2
signal (S);
...

}

init (S, 1);

If T1 is fast (i.e., it does two loops in the 
while cycle), all threads can enter their CSs
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Errors using semaphores: Example 6

while (TRUE) {
...
wait (S);
... Use S
wait (Q);
... Use S and Q
signal (Q);
signal (S);
...

}

T1

init (S, 1);
init (Q, 1);

while (TRUE) {
...
wait (Q);
... Use Q
wait (S);
... Use Q and S
signal (S);
signal (Q);
...

}

T2

Access to pen-drive, then to HD Access to HD, then to pen-drive

Acquiring two 
resources
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Exercise

 Given the code of these three threads

 Which is the possible execution order?

...           
while (1) {

wait (S1);
T1 code
signal (S2);

}
...

...           
while (1) {

wait (S2);
T3 code
signal (S1);

}
...

...           
while (1) {

wait (S2);
T2 code
signal (S2);

}
...

init (S1, 1);
init (S2, 0);

T1 T2 T3
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Solution

T1

T3

T2

...           
while (1) {

wait (S1);
T1 code
signal (S2);

}
...

...           
while (1) {

wait (S2);
T3 code
signal (S1);

}
...

...           
while (1) {

wait (S2);
T2 code
signal (S2);

}
...

init (S1, 1);
init (S2, 0);

T1 T2 T3

S2

S2

S2

S2

S1

 It is a peculiar synchronization example !!
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Exercise

 Implement this precedence 
graph using semaphores

 All T/P must be cyclic

T1

T3

T2

This way they don't have to be 
instantiated several times
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Solution

...           
while (1) {

wait (S1);
T1 code 
signal (S2);

}
...

...           
while (1) {

wait (S3);
T3 code
signal (S1);

}
...

...           
while (1) {

wait (S2);
T2 code
signal (S3);

}
...

init (S1, 1);
init (S2, 0);
init (S3, 0);

T1 T2 T3

 Implement this precedence 
graph using semaphores

 All T/P must be cyclic

T1

T3

T2
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Exercise

T2

T1

T4

T3

 Implement this precedence 
graph using semaphores

 T/P are not cyclic
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Solution

T1 code 
signal (S1);
signal (S1);
...

...           
wait (S2);
wait (S2);
T4 code

...           
wait (S1);
T2 code 
signal (S2);
...

...           
wait (S1);
T3 code
signal (S2);
...

init (S1, 0);
init (S2, 0);

TTTT1111 TTTT3333

TTTT2222

TTTT4444

T2

T1

T4

T3

 Implement this precedence 
graph using semaphores

 T/P are not cyclic
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Exercise

 Implement this precedence 
graph using semaphores

 All T/P must be cyclic
T2

T1

T4

T3
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Erroneous solution

init (S1, 1);
init (S2, 0);
init (S3, 0);

while (1) {
wait (S1);
T1 code
signal (S2);
signal (S2);

}

while (1) {
wait (S2);
T2 code
signal (S3);

}

while (1) {
wait (S2);
T3 code
signal (S3);

}

while (1) {   
wait (S3);
wait (S3);
T4 code
signal (S1);

}

TTTT1111
TTTT3333

TTTT2222

TTTT4444

 Implement this precedence 
graph using semaphores

 All T/P must be cyclic
T2

T1

T4

T3
S3

S2

S1

OK

NO
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Solution

init (S1, 1);
init (S2, 0);
init (S3, 0);
init (S4, 0);

while (1) {
wait (S1);
T1 code
signal (S2);
signal (S3);

}

while (1) {
wait (S2);
T2 code
signal (S4);

}

while (1) {
wait (S3);
T3 code  
signal (S4);

}

while (1) {   
wait (S4);
wait (S4);
T4 code  
signal (S1);

}

TTTT1111
TTTT3333

TTTT2222

TTTT4444

 Implement this precedence graph 
using semaphores

 All T/P must be cyclic
T2

T1

T4

T3
S4

S1S3S2
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Exercise

 Implement this 
precedence graph 
using semaphores

 T/P are not cyclic

T0

T2
T1

T5

T7T6

T8

T3

T4
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Erroneous solution

init (S1, 0);
init (S2, 0);
init (S3, 0);
...

T0
T0 code
signal(S1);
signal(S1);
signal(S1);

T0

T2
T1

T5

T7T6

T8

T3

T4

T1
wait(S1);
T1 code
signal(S2);
signal(S2);

T2
wait(S1);
T2 code
signal(S2);

T3
wait(S1);
T3 code
...

T4
wait(S2);
T4 code
...

T5
wait(S2);
wait(S2);
T5 code
... …
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Solution

init (S1, 0);
init (S2, 0);
init (S3, 0);
...

T0
T0 code
signal(S1);
signal(S2);
signal(S3);

T0

T2
T1

T5

T7T6

T8

T3

T4

T1
wait(S1);
T1 code
signal(S4);
signal(S5);

T2
wait(S2);
T2 code
signal(S5);

T3
wait(S3);
T3 code
signal(S7);

T4
wait(S4);
T4 code
signal(S6);

T5
wait(S5);
wait(S5);
T5 code
signal(S6);
signal(S7); …
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Solution

T0

T2
T1

T5

T7T6

T8

T3

T4

T6
wait(S6);
wait(S6);
T6 code
signal(S8);

T7
wait(S7);
wait(S7);
T7 code
signal(S8);

T8 
wait(S8);
wait(S8);
T8 code

This solution is correct, but the number of 
semaphores is not minimal.
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Exercise

 Implement this 
precedence graph 
using semaphores

 Version A: T/P are
not cyclic, but use 
the minimum 
number of 
semaphores

 Version B: T/P are
cyclic

T0

T2
T1

T5

T7T6

T8

T3

T4
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Implementation of a semaphore

 Semaphores must be implemented without 
"active" busy waiting (spin-lock)

 We define a semaphore as a C structure with

 A counter

 A list (queue) of processes

typedef struct semaphore_s {
int cnt;              // Number of processes
process_t *head;      // List of processes

} semaphore_t;
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signal (semaphore_t *S) {
S->cnt++;
if (S->cnt<=0) {

pop P from S->head;
wakeup P;

}
}

wait (semaphore_t *S) {
S->cnt--;
if (S->cnt<0) {

push P to S->head;
block P;

}
}

init (semaphore_t *S, int k) {
alloc S;
S->cnt = k;
S->head = NULL;

}

Implementation of a semaphore

destroy (semaphore_t *S) {
while (S->cnt<=0) {

free P from S->head;
S->cnt++;

}
}

Init with 
� ≥ 0

cnt can assume 
negative values

There are 
queued P only 

if ��� ≤ 0

All remaining P were 
extracted from the queue

Wait only if 
��� < 0
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Implementation of a semaphore

 The real implementation allows a semaphore to 
have negative values

 Its absolute value indicates the number of 
processes in the queue of the semaphore

 The queue

 Can be implemented with a pointer in the Process 
Control Block (PCB) of the processes

 It uses the policies defined by the scheduler (e.g., 
FIFO)
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Real implementations

 There are several semaphores implementations

 Semaphores by means of a pipe

 POSIX Pthread

 Condition variables 

 Semaphores

● The most important

 Mutex (for mutual exclusion)

 Linux semaphores

 Notice that semaphores are

 Global shared objects (see sem_init)

 They are allocated by a thread, but they are kernel 
objects

System call:
pthread_cond_init

pthread_cond_wait

pthread_cond_signal

pthread_cond_broadcast

pthread_cond_destroy

System call:
semget, semop, semctl

(in sys/sem.h) they are 

complex to use
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 Given a pipe

 The counter of a semaphore is achieved by means 
of tokens

 Signal implemented using the write system call 
to write a token on the pipe (non-blocking)

 Wait implemented using the read system call to 
read a token from the pipe (blocking)

Semaphore by means of a pipe

write
(signal)

read
(wait)
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semaphoreInit (s)

#include <unistd.h>

void semaphoreInit (int *S, int k) {
char ctr = 'X';
int i;
if (pipe (S) == -1) {

printf ("Error"); exit (-1); 
}
for(i=0; i<k; i++)

if (write(S[1], &ctr, sizeof(char)) != 1) {
printf ("Error"); exit (-1);

}
return;

}

 Semaphore initialization

 The variable S must be defined as a global variable
● int S[2]; 

● int *S = malloc (2 * sizeof (char));

Writes k 
characters, i.e., 
initializes the 
semaphore 
counter to k 
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semaphoreSignal (s)

#include <unistd.h>

void semaphoreSignal (int *S) {
char ctr = 'X';
if (write(S[1], &ctr, sizeof(char)) != 1) {

printf ("Error");
exit (-1);

}
return;

}

 Writes a character (any) on a pipe

 Suppose the number of writes (signals) before a 
read (wait) not exceed the dimension of the pipe

Writes a single character, 
i.e., increments the 

semaphore counter k 
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semaphoreWait (s)

#include <unistd.h>

void semaphoreWait (int *S) {
char ctr;
if (read (S[0], &ctr, sizeof(char)) != 1) {

printf (“Error”);
exit (-1);

}
return;

}

 Reads a character from a pipe (read is blocking )

If the pipe is empty, 
read() waits
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Example

int main() {
int S[2];
pid_t pid;
semaphoreInit (S, 0);
pid = fork();
// Check for correctness
if (pid == 0) {                 // child

semaphoreWait (S);
printf("Wait done.\n");

} else {                        // parent
printf("Sleep 3s.\n");
sleep (3);
semaphoreSignal (S);
printf("Signal done.\n");
}
return 0;

}

Use of a pipe as a synchronization 
semaphore between P parent and P child
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POSIX semaphores

 There are two types of POSIX semaphores

 Unnamed semaphores

 Implemented in the internal memory of the process

 They are used for the synchronization of threads 
within the same process

 Named semaphores

 Implemented using shared memory, they are
“process-shared semaphore”

 The are generally used in the synchronization 
between processes

● The name (sem_open) allows their use in different 
processes
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POSIX semaphores

 We will analyze only unnamed semaphores

 The implementation is independent from the OS, 
and it is defined in the semaphore.h header file

 Insert in the .c file
 #include <semaphore.h>

 The semaphore is a variable of type sem_t

 A semaphore can be allocated statically or 
dynamically
 sem_t *sem1, *sem2, ...;

 Functions defined on semaphores

 Are named sem_*

 Return -1 on error

System call:
sem_init
sem_wait

sem_trywait
sem_post

sem_getvalue
sem_destroy
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sem_init ()

int sem_init (
sem_t *sem,
int pshared,
unsigned int value

);

 Initializes the semaphore counter at value value

 The pshared value identifies the type of 

semaphore

 If equal to 0, the semaphore is local to the threads 

of current process

 Otherwise, the semaphore can be shared between 
different processes (parent that initializes the 
semaphore and its children) Linux does not currently support

shared semaphores
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sem_wait ()

int sem_wait (
sem_t *sem

);

 Standard wait 

 If the semaphore is equal to 0, it blocks the caller 
until it can decrease the value of the semaphore
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sem_trywait ()

int sem_trywait (
sem_t *sem

);

 Non-blocking wait

 If the semaphore counter has a value greater than 
0, perform the decrement, and returns 0

 If the semaphore is equal to 0, returns -1 (instead 
of blocking the caller as sem_wait does)
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sem_post ()

int sem_post (
sem_t *sem

);

 Standard signal

 Increments the semaphore counter, or wakes up a 
blocked thread if present
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sem_getvalue ()

int sem_getvalue (
sem_t *sem,
int *valP

);

 Allows obtaining the value of the semaphore 
counter

 The value is assigned to *valP

 If there are waiting threads

 0 is assigned to *valP (Linux)

 or a negative number whose absolute value is equal 
to the number of processes waiting (POSIX)

Better not to use this function. From Linux 
manual: "The value of the semaphore may already 
have changed by the time sem_getvalue() returns."
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sem_destroy ()

int sem_destroy (
sem_t *sem

);

 Destroys the semaphore at the address pointed 
by sem

 Destroying a semaphore that other threads are 
currently blocked on produces undefined behavior 
(on error, -1 is returned)

 Using a semaphore that has been destroyed 
produces undefined results, until the semaphore 
has been reinitialized
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Example

#include "semaphore.h"

sem_t *sem;
sem = (sem_t *)

malloc(sizeof(sem_t));
sem_init (sem, 0, 0);

... create threads ...

sem_destroy (sem);

sem_wait (sem);
... SC ...
sem_post (sem);

#include "semaphore.h"

sem_t sem;
sem_init (&sem, 0, 0);

... create threads ...

sem_destroy (&sem);

sem_wait (&sem);
... SC ...
sem_post (&sem);

The use of the sem_* 
POSIX functions for 

synchronization

Static semaphore

Dynamic 
semaphore
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 Binary semaphores (mutex)

 A mutex is of type pthread_mutex_t

 System calls

 pthread_mutex_init

 pthread_mutex_lock

 pthread_mutex_trylock

 pthread_mutex_unlock

 pthread_mutex_destroy

Pthread mutex

Alternative to sem_xxxx primitives, mutex is 
less general than semaphores (i.e., they can 

assume only the two values 0 or 1)



60Operating Systems

pthread_mutex_init ()

int pthread_mutex_init (
pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr

);

 Initializes the mutex referenced by mutex with 
attributes specified by attr (default=NULL)

 Return value

 0 on success

 Error code otherwise
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pthread_mutex_lock ()

int pthread_mutex_lock (
pthread_mutex_t *mutex

);

 Control the value of mutex and

 Blocks the caller if the mutex is locked

 Acquire the mutex lock if the mutex is unlocked

 Return value 

 0 on success

 Error code otherwise



62Operating Systems

pthread_mutex_trylock ()

int pthread_mutex_trylock (
pthread_mutex_t *mutex

);

 Similar to pthread_mutex_lock, but returns 
without blocking the caller if the mutex is locked

 Return value

 0 if the lock has been successfully acquired

 EBUSY error if the mutex was already locked by 

another thread
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pthread_mutex_unlock ()

int pthread_mutex_unlock (
pthread_mutex_t *mutex

);

 Release the mutex lock (typically at the end of a 
Critical Section)

 Return value 

 0 on success

 Error code otherwise
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pthread_mutex_destroy ()

int pthread_mutex_destroy (
pthread_mutex_t *mutex

);

 Free mutex memory

 The mutex cannot be used any more

 Return value 

 0 on success

 Error code otherwise


