Synchronization

Semaphores
Stefano Quer, Pietro Laface, and Stefano Scanzio
Dipartimento di Automatica e Informatica
Politecnico di Torino
skenz.it/os stefano.scanzio@polito.it

Operating Systems 2

Introduction

< The previous solutions are not satisfactory,
because

» software solutions are complex to use from the
point of view of the programmer

» hardware solutions are difficult to implement from
the point of view of the hardware designer
% OSs provide more appropriate primitives called
semaphores
» Introduced by Dijkstra in 1965

» They are not based on busy waiting
implementation, and therefore they do not waste
resources

Operating Systems 3

< A semaphore S is a shared structure including
» A counter

» A waiting queue, managed by the kernel
» Both protected by a lock

(typedef struct semaphore_tag { A
char lock; // Lock variable protects count
// and queue management
int cnt; // Counter
process_t *head; // Thread list
\} semaphore_t;

» Operations on S are atomic
» Atomicity is managed by the OS

> It is impossible for two threads to perform
simultaneous operations on the same semaphore

Operating Systems 7~ &

‘e

%+ A semaphore S is ﬁstﬁiéfdwi?iicﬁeﬁgt‘éfiij
> An integer shared variable =) el) GRUINEEs
> Protected by the operating system
» Usable for mutual exclusion and synchronization
% Operation on S are always executed in an atomic
way

» The atomicity is guaranteed by the operating
system

> It is impossible for two processes to execute
concurrent operations on the same semaphore

Operating Systems - | 9

Manipulation functions

%+ Typical operations on a semaphore S

> init (S, k)
= Defines and initializes the semaphore S to the value k
> wait (S) [sleep, down, P]

= Allows (in the reservation code) to obtain the access
of the CS protected by the semaphore S

> signal (S) | wakeup, up, V]

L

= Allows (in the release code) to release the CS
protected by the semaphore S

» destroy (S)
= Frees the semaphore S

They are not the "wait" and
"signal" seen in the past

Operating Systems - | 6

Semaphore primitives

| k IS a counter]

 init (S, k)
» Defines and initializes semaphore S to value k
> Two types of semaphores %[s 2 e e J

= Binary semaphores (mutex = MUTual EXclusion)
e ThevalueofkisonlyOor1

= Counting semaphores
e The value of k is non negative

/[Logical implementation 1
4 N
init (S, k) {

alloc (S);
S=k;

}

\ J

Atomic operation 1

Operating Systems 17~ 7

‘e

Semaphore primitives

* wait (S)
> If the counter value of s is negative or zero blocks
the calling T/P

= If S is negative, its absolute value |S| indicates the
number of waiting threads

» The counter is decremented at each call

Other possible (and equivalent)
logical implementation

—

Logical implementation]

4

wait (S) { 4 Real implementations do

vswhile (S<=0) ;| not use busy waiting

L } Atomic
operation

In the logical versions
S is always positive

wait (S) {
if (S==0) block();
else S—;

}

-

Operating Systems 17~ 8

Semaphore primitives

* wait (S)
» Originally called P () from the Dutch language
"probeer te verlagen”, i.e., "try to decrease"

» Not to be confused with the wait system call used
to wait for a child process

Other possible (and equivalent)

Logical implementation] logical implementation

—

In the logical versions
S is always positive

wait (S) {
if (S==0) block();
else S—;

}

4

wait (S) { 4 Real implementations do

vswhile (S<=0) ;| not use busy waiting

L } Atomic
operation

-

Operating Systems T =

Semaphore primitives

\Z

% signal (S)
» Increases the semaphore s

= If 8 counter is negative or zero some T/P was

blocked on the semaphore queue, and it can be
wakeup

» Originally called v (), from the Dutch language
"verhogen", i.e., "to increment”

> Not to be confused with system call signal that
IS used to declare a signal handler

Logical _ _
implementation Other possible (and equivalent) | - -
- 1 logical implementation signal (S) {
i L b .~ if (blocked())

signal (S) { wakeup () ;
St++; N } else S++;

} Atomic operation }
(register=s;register++;s=register;) g)

Operating Systems oy 10

Semaphore primitives

“* destroy (S)
» Release semaphore s memory

= Actual implementations of a semaphore require
much more of a simple global variable to define a
semaphore

» This function is often not used in the examples

destroy (S) { /(Logical
free (S); implementation
} /\

Operating Systems oy 11

Semaphore primitives

% The semaphore queue

> Is implemented in kernel space by means of a
queue of Thread Control Blocks

» The kernel scheduler decides the queue
management strategy (not necessarily FIFO)

Operating Systems

12
init (S, 1);
e A 4 N\
while (TRUE) ({ Pi/ T, while (TRUE) { Pj/1}
wait (S); wait (S);
CS CS
signal (S); signal (S);
non critical section non critical section
} }
_ J /
Remember:
wait (S) {

}

signal (S) {

}

if (S==0) block();
else S—;

if (blocked())
wakeup () ;
else S++;

7

Operating Systems ' ol ' - I3

4)

init (S, 1) T T, T S queue
1
a8 wait 0
signal (S); | cs, wait 1T,
; g 2 T,Ts
-2 T, T;
signal 2 T, Ts
-1 T,
7 o
At most one T/P 0

at a time in the

critical section signal 1
\ J

Operating Systems oy 14

Critical sections of N threads

4 D
init (S, 2); Ty T T3 S queue
e o o 2

1t (S); _
ggl = walt 1
signal (S); CSl et 0
) ’ cs,

Threads 1 and 2 in _
their CSs signal

Threads 2 and 3 i X

reads 2 and 3 in :

[their CSs J slglie] .
signal 2

at a time in the

At most two T/P
critical section

Operating Systems T i)

Synchronization with semaphores

% The use of semaphores is not limited to the
Critical Section access protocol

“» Semaphores can be used to solve any
synchronization problem using

» An appropriate positioning of semaphores in the
code

» Possibly, more than one semaphore
» Possibly, additional shared variables

Operating Systems i~ 16

Pure synchronization: Example 1

+ Obtain a specific order of execution

» T,executes code A before T; executes code B

T T,
init (S, 0);] O Q
. T | (.. T; \
A; wait (S);
signal (S); B;

Operating Systems

74

Pure synchronization: Example 2

“* Synchronize two T/P so that

» T, waits T,
> then, T, waits T;

» It is a client-server schema

/

(&

init (S1, 0);
init (S2, 0);
T/P) [T,/ P}
while (TRUE) ({ while (TRUE) {
prepare data wait (S1);
signal (S1); process data
wait (s2); —————————— gignal (S2);
get processed data c ..
} }
VRN)

18

Operating Systems

p, , -5

Pure synchronization : Example 3

“ Implement this precedence graph

'T.
, J
’
init (S, 0);
) T T,
A; B,
g?lt (S); signal (S);

\\ J A\ J

15,

Operating Systems

p, , -5

Pure synchronization : Example 3

% Other possible solution involving 3 P/T

{init (S, 0);]

T. Ve N\ g .\
A; | wait (S); Ty B; T
signal (S); wait (S); signal (S);
C;

\ J 1\ Y N\ J

Operating Systems 20

Pure synchronization : Example 4

< Implement this precedence graph
cobegin-coend
(concurrent begin-end)

init (S1, 0);
init (S2, 0);

Note: These threads
are not cyclic

4 I 4 N I
PO/ TO P|/ Ti Pn+1/ Tn+1
PO Wait (Sl) ’ o« o o
for (i=1;i<=n; i++) Pj for (i=1l;i<=n;i++)
signal (S1); signal (S2); wait (S2);
. Ph+1

A AN X)

Operating Systems 21

Errors using semaphores: Example 1

% Just a single thread is incorrect

init (S, 1);

Ty T, T3
4 N N I
while (TRUE) ({ while (TRUE) ({ while (TRUE) {
signal (S); !! wait (S); wait (S);
Csl CS2 CS3
wait (S); 1! signal (S); signal (S);
} } }

A L J

Enters its CS and makes possible that
the two other threads enter their CSs

Operating Systems 22

Errors using semaphores: Example 2

% Just a single thread is incorrect

init (S, 1);

Ty T, T3
4 N 4 N [N
while (TRUE) { while (TRUE) { while (TRUE) {
wait (S); wait (S); wait (S);
CSsl CSs2 CS3
wait (S); 11 signal (S); signal (S);
} } }

A L J

When the second wait is executed all
thread are in deadlock

Operating Systems 23

Errors using semaphores: Example 3

% Just a single thread is incorrect

init (S, 1);

Ty T, LE
a 0 a N\ 0\
while (TRUE) ({ while (TRUE) ({ while (TRUE) ({
signal(S); !! wait (S); wait (S);
Csl CS2 Cs3
signal (S) ; signal (S); signal (S);
} } }
(& J (& V2N J
N T/

When the second signal is executed, all threads can enter their CSs.

{ When the first signal is executed, two threads can enter their CSs.

Operating Systems 24

Errors using semaphores: Example 4

% Just a single thread is incorrect

init (S, 1);

T T, LE
2) 2) 2)
while (TRUE) { while (TRUE) { while (TRUE) {
wait (S); wait (S); wait (S);
Cs1l CS2 CS3
! no signal(S) signal (S); signal (S);
} }

)

After T, exit its CS, all If T5 is fast, all threads can
threads will be in deadlock enter their CSs

Operating Systems 29

Errors using semaphores: Example 5

% Just a single thread is incorrect

init (S, 1);

Ty T T3
4 N N)

while (TRUE) {

'! no wait (S);
CSsl
signal (S);

(&

while (TRUE) {

wait (S);
CS2
signal (S);

} ...

If T, is fast (i.e., it does two loops in the
while cycle), all threads can enter their CSs

while (TRUE) {

wait (S);
CS3
signal (S);

Operating Systems 26

Errors using semaphores: Example 6

init (S, 1);

{ Acquiring two }

resources init (Q, 1);
T T,
a a I
while (TRUE) { while (TRUE) ({
wait (S); wait (Q);
... Use S . Use QO
wait (Q); wait (S);

... Use S and Q
signal (Q);
signal (S);

}

-

\

[Access to pen-drive, then to HD

(&

. Use Q and S
signal (S);
signal (Q);

}

\
[Access to HD, them

Operating Systems

% Given the code of these three threads
» Which is the possible execution order?

init (s1,
init (s2,

1),
0);

/

while (1) {
wait (S1);
T, code
signal (S2);
}

(&

\
T

/

while (1) {
wait (S2);
T, code
signal (S2);
}

(&

27

A
while (1) {
wait (S2);
T, code
signal (S1);
}
)

Operating Systems

28

< It is a peculiar synchronization example !

init (S1, 1);
init (S2, 0);

/

while (1) {
wait (S1);
T, code
signal (S2);
}

(&

\
T

while (1) {
wait (S2);
T, code
signal (S2);
}

aq :
s1 ‘G
4)
. T5
while (1) {

wait (S2);

T, code

signal (S1);
}

-)

Operating Systems oy 29

< Implement this precedence G
graph using semaphores

> All T/P must be cyclic

This way they don't have to be G
instantiated several times

Operating Systems 30

< Implement this precedence G

graph using semaphores
> All T/P must be cyclic G

init (S1, 1);
init (S2, 0);
init (S3, 0); G
4 N N [I
... Tl ... T2 -. . T3
while (1) { while (1) { while (1) {
wait (S1); wait (S2); wait (S3);
T, code T, code T, code
signal (S2); signal (S3); signal (S1);
} } }
o 2N 2N)

o
Operating Systems J—, 'ii 31

< Implement this precedence G
graph using semaphores

» T/P are not cyclic G e
()

Operating Systems

3%

< Implement this precedence

graph using semaphores
» T/P are not cyclic

init (S1,
init (SZ2,

0);
0);

-

T, code
signal (S1);
signal (S1);

L

~

-~

(&

wait (S1);
T, code
signal (S2);

(

-

wait (S1);
T, code
signal (S2);

-
T,

wait (S2);

wait (S2);

T, code

e

Operating Systems j— lii 3%

< Implement this precedence

graph using semaphores 0
> All T/P must be cyclic G.e

Operating Systems

< Implement this precedence
graph using semaphores

> All T/P must be cyclic

Ve

init (S1, 1);
init (s2, 0);

init (S3, 0);

-

(&

~
while (1) { |1
wait (S1);

T, code

signal (S2);
signal (S2);

(

\

while (1) {
wait (S2);
T, code

T,

signal (S3);

}

J

-

}

(&

while (1) {
wait (S2);
T, code

T;

signal (S3);

}

N
while (1) { |4
wait (S3);
wait (S3);

T, code

signal (S1);

Operating Systems 33

< Implement this precedence graph

using semaphores S2 G
> All T/P must be cyclic GQG
()

c) - B
init (S1, 1); while (1) { T,
init (S2, 0); wait (S2);
init (83, 0); T, code

\1n:|.t (s4, 0);) signal (S4);

Ve N \} 4 4 A
while (1) { Tl 4 T\ while (1) { T4
wait (S1); while (1) { 3 wait (S4);

T1 code wait (S3); wait (S4);

signal (S2); T; code T, code
signal (S3); signal (S4); signal (S1);
} } ’

- J A J A\ J

Operating Systems v 36

< Implement this
precedence graph
using semaphores

> T/P are not cyclic G

Operating Systems 3

p D
Ty
T, code
signal (S1);
signal (S1);
signal (S1);
o

N N (b
T,
: . T, s
ERLE (L) wait (S1); wait (S1);
13 COdf(SZ) T, code T3 code
signa j ignal (S2);
signal (S2); SR ()
N J N 7 g
p ~ Ve) (A
init (Sl, 0); T T5
- - . 4
%n%t (S2, 0); wait (S2) ; wait (S2);
init (S3, 0); T, code wait (S2);
|) T, code
_ J

Operating Systems 3

To

T, code
signal (S1);
signal (S2) ;
signal (S3);

_ J
D 4 N (\
T,
: . T, T
wait (Sl) ’ wait (SZ) ; wait (S3) -
T, code . T, code T, code
signal (S4); signal (S5) ; signal (S7);
signal (S5);
\ J ~ 7 g
) . p 2 e)
init (s1, 0); T Ts
. . . 4 wait (S5) ;
' ' T, code T. code ’
B) signal (S6) ; signal (S6) ;
N J signal(S7);)

Operating Systems

o2

T T, T,
wait (S6) ; wait (S7);
G G wait (S6) ; wait (S7);
T, code T, code
Q G signal (S8) ; signal (S8) ;
J J
()
19 (@) Tq
. wait (S8) ;
(T wait (S8);
Ty code
\\ J

This solution is correct, but the number of
semaphores is not minimal.

Operating Systems B 1aks 40

< Implement this
precedence graph
using semaphores
> Version A: T/P are G

not cyclic, but use
the minimum

number of G

semaphores
> Version B: T/P are

cyclic a

Operating Systems 41

Implementation of a semaphore

< Semaphores must be implemented without
"active" busy waiting (spin-lock)
<+ We define a semaphore as a C structure with
» A counter
> A list (queue) of processes

4)

typedef struct semaphore_s {
int cnt; // Number of processes
process_t *head; // List of processes

} semaphore_t;

Operating Systems

42

|

" init (semaphore_t *S, int k) {

~

Init with
k>0

J

Wait only if alloc S;
cnt < 0 S->cnt = k;
S—>head = NULL;
)
-

-

wait (semaphore_t *S) {

S->cnt——;

if (S—->cnt<0) {

push P to S->head; pop P

block P;

}
}

}

}
J

cnt can assume
negative values

signal (semaphore_t *S) ({
S—->cnt++;
if (S—>cnt<=0) {

from S—->head;

wakeup P;

There are

-

(&

destroy (semaphore_t *S) {
while (S—->cnt<=0) {
free P from S->head;
S—->cnt++;

}
}

N | queued P only
if cnt <0

All remaining P were
extracted from the queue

J

Operating Systems L § e 43

Implementation of a semaphore

% The real implementation allows a semaphore to
have negative values

> Its absolute value indicates the number of
processes in the queue of the semaphore

% The queue

» Can be implemented with a pointer in the Process
Control Block (PCB) of the processes

> It uses the policies defined by the scheduler (e.q.,
FIFO)

Operating Systems 44

Real implementations

% There are several semaphores implementations

» Semaphores by means of a pipe

» POSIX Pthread System call: o I
= Condition variables pthread cond init

pthread_ cond wait

= Sema phores pthread cond signal

Th £ tant pthread_cond broadcast
° € Most Importan pthread_ cond destroy

= Mutex (for mutual exclusion) _

/System call:
» Linux semaphores . semget, semop, semctl

(in sys/sem.h) they are
% Notice that semaphores are complex to use

» Global shared objects (see sem_init)

» They are allocated by a thread, but they are kernel
objects

45

Operating Systems

p, , -5

Semaphore by means of a pipe

“ @Given a pipe
» The counter of a semaphore is achieved by means
of tokens

> Signal implemented using the write system call
to write a token on the pipe (non-blocking)

» Wait implemented using the read system call to
read a token from the pipe (blocking)

write | < . read
(signal) O (wait)

Operating Systems 46

semaphorelnit (s)

/#include <unistd.h> w\
void semaphoreInit (int *S, int k) ({ h Wr!ctes k.
char ctr = 'X'; C_ E!r_ac_ers' 1€,
int i; initializes the
if (pipe (S) == -1) { semaphore
printf ("Error"); exit (-1); counter to k)
} B
for (i=0; i<k; i++)
if (write(S[l], &ctr, sizeof(char)) !'= 1) {
printf ("Error"); exit (-1);
}
return;
}
\ /

<+ Semaphore initialization

» The variable S must be defined as a global variable
int S[2];
int *S = malloc (2 * sizeof (char));

Operating Systems 47

semaphoreSignal (s)

C 0

#include <unistd.h>
void semaphoreSignal (int *S) {
char ctr = 'X';
if (write(S[1l], &ctr, sizeof(char)) != 1) {
printf ("Error"),;
exit (-1); Writes a single character,
} i.e., increments the
return,;
) semaphore counter k
</
\)

“» Writes a character (any) on a pipe

» Suppose the number of writes (signals) before a
read (wait) not exceed the dimension of the pipe

Operating Systems 48

semaphoreWait (s)

C 0

#include <unistd.h>

void semaphoreWait (int *S) ({
char ctr;

if (read (S[0], &ctr, sizeof(char)) != 1) {
printf (“Error”),;
. _ . N
) exit (-1); If the pipe is empty,
Y. read() waits)
}
o)

%+ Reads a character from a pipe (read is blocking)

Operating Systems

49

|

Use of a pipe as a synchronization
semaphore between P parent and P child

&

//;nt main () {

int S[2];

pid_t pid;

semaphorelInit (S, 0);

pid = fork();

// Check for correctness

if (pid == 0) {
semaphoreWait (S);
printf ("Wait done.\n");

} else {
printf ("Sleep 3s.\n");
sleep (3);
semaphoreSignal (S);
printf ("Signal done.\n");
}

return O;

// child

// parent

Operating Systems ey § 50

POSIX semaphores

< There are two types of POSIX semaphores

» Unnamed semaphores
= Implemented in the internal memory of the process

= They are used for the synchronization of threads
within the same process

» Named semaphores

= Implemented using shared memory, they are
“process-shared semaphore”

= The are generally used in the synchronization
between processes

e The name (sem_open) allows their use in different
processes

Operating Systems T o1

POSIX semaphores

< We will analyze only unnamed semaphores
» The implementation is independent from the OS,
and it is defined in the semaphore.h header file
> Insert in the .c file
= #include <semaphore.h>
%+ The semaphore is a variable of type sem_t
» A semaphore can be allocated statically or

dynamically
= sem_t *sem1, *sem2, ...; " system call:
“ Functions defined on semaphores et
> Are named sem__* sem_trywait
sem_post
» Return -1 on error sem_getvalue

sem_destroy /

Operating Systems 52

()
int sem init (

sem t *sem,

int pshared,

unsigned int wvalue

) ;
L J

% Initializes the semaphore counter at value value

% The pshared value identifies the type of

semaphore

» If equal to 0, the semaphore is local to the threads
of current process

» Otherwise, the semaphore can be shared between
different processes (parent that initializes the

Semaphore and its Ch”dren) Linux does not currently support
shared semaphores

73

Operating Systems _ ﬂi

4)

int sem wait (
sem t *sem

) ;

*» Standard wait

» If the semaphore is equal to 0, it blocks the caller
until it can decrease the value of the semaphore

Operating Systems 17 54

sem_trywait ()

4)

int sem_ trywait (
sem t *sem

) ;

A J

<+ Non-blocking wait
» If the semaphore counter has a value greater than
0, perform the decrement, and returns 0

» If the semaphore is equal to 0, returns -1 (instead
of blocking the caller as sem_wait does)

Operating Systems ey § 79

sem_post ()

int sem post (
sem t *sem

) ;

%+ Standard signal

» Increments the semaphore counter, or wakes up a
blocked thread if present

Operating Systems 56

sem_getvalue ()

z
int sem_getvalue (1
sem t *sem,

int *valP Better not to use this function. From Linux
) ; manual: "The value of the semaphore may already
have changed by the time sem_getvalue() returns."

- J
< Allows obtaining the value of the semaphore
counter

» The value is assigned to *valP
> If there are waiting threads

= 0 is assigned to *valP (Linux)

= Or a negative number whose absolute value is equal
to the number of processes waiting (POSIX)

~

Operating Systems op 4

sem_destroy ()

4)

int sem_destroy (
sem t *sem

) ;

A J

% Destroys the semaphore at the address pointed
by sem
» Destroying a semaphore that other threads are

currently blocked on produces undefined behavior
(on error, -1 is returned)

» Using a semaphore that has been destroyed
produces undefined results, until the semaphore
has been reinitialized

Operating Systems 58

[The use of the sem_*
POSIX functions for
C synchronization
#include "semaphore.h"

4)
sem_t sem; sem wait (&sem);
sem init (&sem, 0, 0); ... sc

sem_post (&sem);

create threads

Static semaphore J
sem_destroy (&sem);
. J
" #include "semaphore.h") Dynamic
semaphore
sem t *sem; (
sem = (sem_t *)

) sem wait (sem);
malloc (sizeof (sem t)); ... 8sC

sem_init (sem, 0, 0); sem post (sem);

create threads ... &

_sem_destroy (sem) ; Y,

Operating Systems 59

Pthread mutex

% Binary semaphores (mutex)
< A mutex is of type pthread_mutex_t

% System calls

» pthread_mutex_init
bthread_mutex_lock
othread_mutex_trylock
bthread_mutex_unlock
bthread_mutex_destroy

YV V VYV V

: .)
Alternative to sem_xxxx primitives, mutex is

less general than semaphores (i.e., they can
assume only the two values 0 or 1)

- J

Operating Systems 60

pthread_mutex_init ()

4)

int pthread mutex_init (
pthread mutex_t *mutex,
const pthread_mutexattr t *attr

) ;

A J

% Initializes the mutex referenced by mutex with
attributes specified by attr (default=NULL)
% Return value
» 0 on success
» Error code otherwise

Operating Systems ; 61

pthread_mutex_lock ()

4 N

int pthread mutex lock (
pthread mutex t *mutex

) ;

A J

% Control the value of mutex and

> Blocks the caller if the mutex is locked

» Acquire the mutex lock if the mutex is unlocked
% Return value

» 0 on success

» Error code otherwise

Operating Systems 62

pthread_mutex_trylock ()

4)

int pthread mutex trylock (
pthread mutex t *mutex

) ;

A J

% Similar to pthread_mutex_lock, but returns
without blocking the caller if the mutex is locked

2 Return value

» 0 if the lock has been successfully acquired

» EBUSY error if the mutex was already locked by
another thread

Operating Systems 63

pthread_mutex_unlock ()

4 N

int pthread mutex unlock (
pthread mutex t *mutex

) ;

A J

% Release the mutex lock (typically at the end of a
Critical Section)

+» Return value
» 0 on success
» Error code otherwise

Operating Systems 64

pthread_mutex_destroy ()

int pthread mutex_destroy (
pthread mutex t *mutex

) ;

A J

L)

0

* Free mutex memory
» The mutex cannot be used any more

» Return value
» 0 on success
» Error code otherwise

L)

0

4

L)

L)

