
Synchronization

Semaphores
Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

2Operating Systems

Introduction

 The previous solutions are not satisfactory,
because

 software solutions are complex to use from the
point of view of the programmer

 hardware solutions are difficult to implement from
the point of view of the hardware designer

 OSs provide more appropriate primitives called
semaphores

 Introduced by Dijkstra in 1965

 They are not based on busy waiting
implementation, and therefore they do not waste
resources

3Operating Systems

Definition

 A semaphore S is a shared structure including

 A counter

 A waiting queue, managed by the kernel

 Both protected by a lock

 Operations on S are atomic

 Atomicity is managed by the OS

 It is impossible for two threads to perform
simultaneous operations on the same semaphore

typedef struct semaphore_tag {
char lock; // Lock variable protects count

// and queue management
int cnt; // Counter
process_t *head; // Thread list

} semaphore_t;

4Operating Systems

Definition

 A semaphore S is

 An integer shared variable

 Protected by the operating system

 Usable for mutual exclusion and synchronization

 Operation on S are always executed in an atomic
way

 The atomicity is guaranteed by the operating
system

 It is impossible for two processes to execute
concurrent operations on the same semaphore

Shared object, of integer
type, which behaves as

a shared counter

5Operating Systems

Manipulation functions

 Typical operations on a semaphore S

 init (S, k)

 Defines and initializes the semaphore S to the value k

 wait (S)

 Allows (in the reservation code) to obtain the access
of the CS protected by the semaphore S

 signal (S)

 Allows (in the release code) to release the CS
protected by the semaphore S

 destroy (S)

 Frees the semaphore S

sleep, down, P

wakeup, up, V

They are not the "wait" and
"signal" seen in the past

6Operating Systems

Semaphore primitives

 init(S, k)

 Defines and initializes semaphore S to value k

 Two types of semaphores

 Binary semaphores

● The value of k is only 0 or 1

 Counting semaphores

● The value of k is non negative

known as "mutex lock"
(mutex ≡ MUTual EXclusion)

k is a counter

init (S, k) {
alloc (S);
S=k;

}

Logical implementation

Atomic operation

7Operating Systems

Semaphore primitives

 wait(S)

 If the counter value of S is negative or zero blocks

the calling T/P

 If S is negative, its absolute value |S| indicates the
number of waiting threads

 The counter is decremented at each call

wait (S) {
while (S<=0);
S--;

}

Logical implementation

Atomic
operation

wait (S) {
if (S==0) block();
else S--;

}

Other possible (and equivalent)
logical implementationIn the logical versions

S is always positive

Real implementations do
not use busy waiting

8Operating Systems

Semaphore primitives

 wait(S)

 Originally called P() from the Dutch language

"probeer te verlagen", i.e., "try to decrease"

 Not to be confused with the wait system call used
to wait for a child process

wait (S) {
while (S<=0);
S--;

}

Logical implementation

Atomic
operation

wait (S) {
if (S==0) block();
else S--;

}

Other possible (and equivalent)
logical implementationIn the logical versions

S is always positive

Real implementations do
not use busy waiting

9Operating Systems

Semaphore primitives

 signal(S)

 Increases the semaphore S

 If S counter is negative or zero some T/P was

blocked on the semaphore queue, and it can be
wakeup

 Originally called V(), from the Dutch language

"verhogen", i.e., "to increment"

 Not to be confused with system call signal that
is used to declare a signal handler

signal (S) {
if (blocked())

wakeup();
else S++;

}

signal (S) {
S++;

}

Logical
implementation

Atomic operation
(register=s;register++;s=register;)

Other possible (and equivalent)
logical implementation

10Operating Systems

Semaphore primitives

 destroy(S)

 Release semaphore S memory

 Actual implementations of a semaphore require
much more of a simple global variable to define a
semaphore

 This function is often not used in the examples

destroy (S) {
free (S);

}

Logical
implementation

11Operating Systems

Semaphore primitives

 The semaphore queue

 Is implemented in kernel space by means of a
queue of Thread Control Blocks

 The kernel scheduler decides the queue
management strategy (not necessarily FIFO)

12Operating Systems

while (TRUE) {
wait (S);
CS
signal (S);
non critical section

}

while (TRUE) {
wait (S);
CS
signal (S);
non critical section

}

Pi / Ti Pj / Tj

Mutual exclusion with semaphore

init (S, 1);

Remember:

wait (S) {
if (S==0) block();
else S--;

}
signal (S) {
if (blocked())
wakeup();

else S++;
}

13Operating Systems

Critical sections of N threads

init (S, 1);
...
wait (S);
CS
signal (S);

T1 T2 T3 S queue

1

wait 0

CS1 wait -1 T2

b
lo

ck
e
d wait -2 T2, T3

b
lo

ck
e
d

-2 T2, T3

signal -2 T2, T3

CS2 -1 T3

signal 0

CS3 0

signal 1

At most one T/P
at a time in the
critical section

14Operating Systems

Critical sections of N threads

init (S, 2);
...
wait (S);
CS
signal (S);

T1 T2 T3 S queue

2

wait 1

CS1 wait 0

CS2 wait -1 T3

b
lo

ck
e
d -1 T3

signal 0

CS3 0

signal 1

signal 2

Threads 1 and 2 in
their CSs

Threads 2 and 3 in
their CSs

At most two T/P
at a time in the
critical section

15Operating Systems

Synchronization with semaphores

 The use of semaphores is not limited to the
Critical Section access protocol

 Semaphores can be used to solve any
synchronization problem using

 An appropriate positioning of semaphores in the
code

 Possibly, more than one semaphore

 Possibly, additional shared variables

16Operating Systems

Pure synchronization: Example 1

 Obtain a specific order of execution

 Ti executes code A before Tj executes code B

init (S, 0);

……
wait (S);
B;
……

……
A;
signal (S);
……

Ti Tj

A

…..

…..

B

…..

…..

Ti Tj

17Operating Systems

while (TRUE) {
wait (S1);
process data
signal (S2);
...

}

Pure synchronization: Example 2

while (TRUE) {
prepare data
signal (S1);
wait (S2);
get processed data

}

 Synchronize two T/P so that

 Tj waits Ti

 then, Ti waits Tj

 It is a client-server schema

init (S1, 0);
init (S2, 0);

Ti / Pi Tj / Pj

18Operating Systems

B;
signal (S);

Pure synchronization : Example 3

A;
wait (S);
C;

 Implement this precedence graph

init (S, 0);

BA

CTi

Tj

Ti Tj

19Operating Systems

Pure synchronization : Example 3

A;
signal (S);

 Other possible solution involving 3 P/T

init (S, 0);

BA

C

Ti Tj

Ti

Tk

wait (S);
wait (S);
C;

Tk B;
signal (S);

Tj

20Operating Systems

Pure synchronization : Example 4

PnP2

Pn+1

P0

P1
...

P0
for(i=1;i<=n;i++)

signal (S1);
...

init (S1, 0);
init (S2, 0);

...
for(i=1;i<=n;i++)

wait (S2);
Pn+1

wait (S1);

Pi
signal (S2);
...

P0/T0 Pn+1/Tn+1Pi/Ti

 Implement this precedence graph

cobegin-coend
(concurrent begin-end)

Note: These threads
are not cyclic

S1

S2

21Operating Systems

Errors using semaphores: Example 1

 Just a single thread is incorrect

Enters its CS and makes possible that
the two other threads enter their CSs

while (TRUE) {
...
signal (S); !!
CS1
wait (S); !!
...

}

T1 T2

while (TRUE) {
...
wait (S);
CS3
signal (S);
...

}

T3

while (TRUE) {
...
wait (S);
CS2
signal (S);
...

}

init (S, 1);

22Operating Systems

Errors using semaphores: Example 2

 Just a single thread is incorrect

When the second wait is executed all
thread are in deadlock

while (TRUE) {
...
wait (S);
CS1
wait (S); !!
...

}

T1 T2

while (TRUE) {
...
wait (S);
CS3
signal (S);
...

}

T3

while (TRUE) {
...
wait (S);
CS2
signal (S);
...

}

init (S, 1);

23Operating Systems

Errors using semaphores: Example 3

 Just a single thread is incorrect

When the first signal is executed, two threads can enter their CSs.
When the second signal is executed, all threads can enter their CSs.

while (TRUE) {
...
signal(S); !!
CS1
signal(S);
...

}

T1 T2

while (TRUE) {
...
wait (S);
CS3
signal (S);
...

}

T3

while (TRUE) {
...
wait (S);
CS2
signal (S);
...

}

init (S, 1);

24Operating Systems

Errors using semaphores: Example 4

 Just a single thread is incorrect

After T1 exit its CS, all
threads will be in deadlock

while (TRUE) {
...
wait(S);
CS1
!! no signal(S)
...

}

T1 T2

while (TRUE) {
...
wait (S);
CS3
signal (S);
...

}

T3

while (TRUE) {
...
wait (S);
CS2
signal (S);
...

}

init (S, 1);

If T3 is fast, all threads can
enter their CSs

25Operating Systems

Errors using semaphores: Example 5

 Just a single thread is incorrect

while (TRUE) {
...
!! no wait(S);
CS1
signal (S);
...

}

T1 T2

while (TRUE) {
...
wait (S);
CS3
signal (S);
...

}

T3

while (TRUE) {
...
wait (S);
CS2
signal (S);
...

}

init (S, 1);

If T1 is fast (i.e., it does two loops in the
while cycle), all threads can enter their CSs

26Operating Systems

Errors using semaphores: Example 6

while (TRUE) {
...
wait (S);
... Use S
wait (Q);
... Use S and Q
signal (Q);
signal (S);
...

}

T1

init (S, 1);
init (Q, 1);

while (TRUE) {
...
wait (Q);
... Use Q
wait (S);
... Use Q and S
signal (S);
signal (Q);
...

}

T2

Access to pen-drive, then to HD Access to HD, then to pen-drive

Acquiring two
resources

27Operating Systems

Exercise

 Given the code of these three threads

 Which is the possible execution order?

...
while (1) {

wait (S1);
T1 code
signal (S2);

}
...

...
while (1) {

wait (S2);
T3 code
signal (S1);

}
...

...
while (1) {

wait (S2);
T2 code
signal (S2);

}
...

init (S1, 1);
init (S2, 0);

T1 T2 T3

28Operating Systems

Solution

T1

T3

T2

...
while (1) {

wait (S1);
T1 code
signal (S2);

}
...

...
while (1) {

wait (S2);
T3 code
signal (S1);

}
...

...
while (1) {

wait (S2);
T2 code
signal (S2);

}
...

init (S1, 1);
init (S2, 0);

T1 T2 T3

S2

S2

S2

S2

S1

 It is a peculiar synchronization example !!

29Operating Systems

Exercise

 Implement this precedence
graph using semaphores

 All T/P must be cyclic

T1

T3

T2

This way they don't have to be
instantiated several times

30Operating Systems

Solution

...
while (1) {

wait (S1);
T1 code
signal (S2);

}
...

...
while (1) {

wait (S3);
T3 code
signal (S1);

}
...

...
while (1) {

wait (S2);
T2 code
signal (S3);

}
...

init (S1, 1);
init (S2, 0);
init (S3, 0);

T1 T2 T3

 Implement this precedence
graph using semaphores

 All T/P must be cyclic

T1

T3

T2

31Operating Systems

Exercise

T2

T1

T4

T3

 Implement this precedence
graph using semaphores

 T/P are not cyclic

32Operating Systems

Solution

T1 code
signal (S1);
signal (S1);
...

...
wait (S2);
wait (S2);
T4 code

...
wait (S1);
T2 code
signal (S2);
...

...
wait (S1);
T3 code
signal (S2);
...

init (S1, 0);
init (S2, 0);

TTTT1111 TTTT3333

TTTT2222

TTTT4444

T2

T1

T4

T3

 Implement this precedence
graph using semaphores

 T/P are not cyclic

33Operating Systems

Exercise

 Implement this precedence
graph using semaphores

 All T/P must be cyclic
T2

T1

T4

T3

34Operating Systems

Erroneous solution

init (S1, 1);
init (S2, 0);
init (S3, 0);

while (1) {
wait (S1);
T1 code
signal (S2);
signal (S2);

}

while (1) {
wait (S2);
T2 code
signal (S3);

}

while (1) {
wait (S2);
T3 code
signal (S3);

}

while (1) {
wait (S3);
wait (S3);
T4 code
signal (S1);

}

TTTT1111
TTTT3333

TTTT2222

TTTT4444

 Implement this precedence
graph using semaphores

 All T/P must be cyclic
T2

T1

T4

T3
S3

S2

S1

OK

NO

35Operating Systems

Solution

init (S1, 1);
init (S2, 0);
init (S3, 0);
init (S4, 0);

while (1) {
wait (S1);
T1 code
signal (S2);
signal (S3);

}

while (1) {
wait (S2);
T2 code
signal (S4);

}

while (1) {
wait (S3);
T3 code
signal (S4);

}

while (1) {
wait (S4);
wait (S4);
T4 code
signal (S1);

}

TTTT1111
TTTT3333

TTTT2222

TTTT4444

 Implement this precedence graph
using semaphores

 All T/P must be cyclic
T2

T1

T4

T3
S4

S1S3S2

36Operating Systems

Exercise

 Implement this
precedence graph
using semaphores

 T/P are not cyclic

T0

T2
T1

T5

T7T6

T8

T3

T4

37Operating Systems

Erroneous solution

init (S1, 0);
init (S2, 0);
init (S3, 0);
...

T0
T0 code
signal(S1);
signal(S1);
signal(S1);

T0

T2
T1

T5

T7T6

T8

T3

T4

T1
wait(S1);
T1 code
signal(S2);
signal(S2);

T2
wait(S1);
T2 code
signal(S2);

T3
wait(S1);
T3 code
...

T4
wait(S2);
T4 code
...

T5
wait(S2);
wait(S2);
T5 code
... …

38Operating Systems

Solution

init (S1, 0);
init (S2, 0);
init (S3, 0);
...

T0
T0 code
signal(S1);
signal(S2);
signal(S3);

T0

T2
T1

T5

T7T6

T8

T3

T4

T1
wait(S1);
T1 code
signal(S4);
signal(S5);

T2
wait(S2);
T2 code
signal(S5);

T3
wait(S3);
T3 code
signal(S7);

T4
wait(S4);
T4 code
signal(S6);

T5
wait(S5);
wait(S5);
T5 code
signal(S6);
signal(S7); …

39Operating Systems

Solution

T0

T2
T1

T5

T7T6

T8

T3

T4

T6
wait(S6);
wait(S6);
T6 code
signal(S8);

T7
wait(S7);
wait(S7);
T7 code
signal(S8);

T8
wait(S8);
wait(S8);
T8 code

This solution is correct, but the number of
semaphores is not minimal.

40Operating Systems

Exercise

 Implement this
precedence graph
using semaphores

 Version A: T/P are
not cyclic, but use
the minimum
number of
semaphores

 Version B: T/P are
cyclic

T0

T2
T1

T5

T7T6

T8

T3

T4

41Operating Systems

Implementation of a semaphore

 Semaphores must be implemented without
"active" busy waiting (spin-lock)

 We define a semaphore as a C structure with

 A counter

 A list (queue) of processes

typedef struct semaphore_s {
int cnt; // Number of processes
process_t *head; // List of processes

} semaphore_t;

42Operating Systems

signal (semaphore_t *S) {
S->cnt++;
if (S->cnt<=0) {

pop P from S->head;
wakeup P;

}
}

wait (semaphore_t *S) {
S->cnt--;
if (S->cnt<0) {

push P to S->head;
block P;

}
}

init (semaphore_t *S, int k) {
alloc S;
S->cnt = k;
S->head = NULL;

}

Implementation of a semaphore

destroy (semaphore_t *S) {
while (S->cnt<=0) {

free P from S->head;
S->cnt++;

}
}

Init with
� ≥ 0

cnt can assume
negative values

There are
queued P only

if ��� ≤ 0

All remaining P were
extracted from the queue

Wait only if
��� < 0

43Operating Systems

Implementation of a semaphore

 The real implementation allows a semaphore to
have negative values

 Its absolute value indicates the number of
processes in the queue of the semaphore

 The queue

 Can be implemented with a pointer in the Process
Control Block (PCB) of the processes

 It uses the policies defined by the scheduler (e.g.,
FIFO)

44Operating Systems

Real implementations

 There are several semaphores implementations

 Semaphores by means of a pipe

 POSIX Pthread

 Condition variables

 Semaphores

● The most important

 Mutex (for mutual exclusion)

 Linux semaphores

 Notice that semaphores are

 Global shared objects (see sem_init)

 They are allocated by a thread, but they are kernel
objects

System call:
pthread_cond_init

pthread_cond_wait

pthread_cond_signal

pthread_cond_broadcast

pthread_cond_destroy

System call:
semget, semop, semctl

(in sys/sem.h) they are

complex to use

45Operating Systems

 Given a pipe

 The counter of a semaphore is achieved by means
of tokens

 Signal implemented using the write system call
to write a token on the pipe (non-blocking)

 Wait implemented using the read system call to
read a token from the pipe (blocking)

Semaphore by means of a pipe

write
(signal)

read
(wait)

46Operating Systems

semaphoreInit (s)

#include <unistd.h>

void semaphoreInit (int *S, int k) {
char ctr = 'X';
int i;
if (pipe (S) == -1) {

printf ("Error"); exit (-1);
}
for(i=0; i<k; i++)

if (write(S[1], &ctr, sizeof(char)) != 1) {
printf ("Error"); exit (-1);

}
return;

}

 Semaphore initialization

 The variable S must be defined as a global variable
● int S[2];

● int *S = malloc (2 * sizeof (char));

Writes k
characters, i.e.,
initializes the
semaphore
counter to k

47Operating Systems

semaphoreSignal (s)

#include <unistd.h>

void semaphoreSignal (int *S) {
char ctr = 'X';
if (write(S[1], &ctr, sizeof(char)) != 1) {

printf ("Error");
exit (-1);

}
return;

}

 Writes a character (any) on a pipe

 Suppose the number of writes (signals) before a
read (wait) not exceed the dimension of the pipe

Writes a single character,
i.e., increments the

semaphore counter k

48Operating Systems

semaphoreWait (s)

#include <unistd.h>

void semaphoreWait (int *S) {
char ctr;
if (read (S[0], &ctr, sizeof(char)) != 1) {

printf (“Error”);
exit (-1);

}
return;

}

 Reads a character from a pipe (read is blocking)

If the pipe is empty,
read() waits

49Operating Systems

Example

int main() {
int S[2];
pid_t pid;
semaphoreInit (S, 0);
pid = fork();
// Check for correctness
if (pid == 0) { // child

semaphoreWait (S);
printf("Wait done.\n");

} else { // parent
printf("Sleep 3s.\n");
sleep (3);
semaphoreSignal (S);
printf("Signal done.\n");
}
return 0;

}

Use of a pipe as a synchronization
semaphore between P parent and P child

50Operating Systems

POSIX semaphores

 There are two types of POSIX semaphores

 Unnamed semaphores

 Implemented in the internal memory of the process

 They are used for the synchronization of threads
within the same process

 Named semaphores

 Implemented using shared memory, they are
“process-shared semaphore”

 The are generally used in the synchronization
between processes

● The name (sem_open) allows their use in different
processes

51Operating Systems

POSIX semaphores

 We will analyze only unnamed semaphores

 The implementation is independent from the OS,
and it is defined in the semaphore.h header file

 Insert in the .c file
 #include <semaphore.h>

 The semaphore is a variable of type sem_t

 A semaphore can be allocated statically or
dynamically
 sem_t *sem1, *sem2, ...;

 Functions defined on semaphores

 Are named sem_*

 Return -1 on error

System call:
sem_init
sem_wait

sem_trywait
sem_post

sem_getvalue
sem_destroy

52Operating Systems

sem_init ()

int sem_init (
sem_t *sem,
int pshared,
unsigned int value

);

 Initializes the semaphore counter at value value

 The pshared value identifies the type of

semaphore

 If equal to 0, the semaphore is local to the threads

of current process

 Otherwise, the semaphore can be shared between
different processes (parent that initializes the
semaphore and its children) Linux does not currently support

shared semaphores

53Operating Systems

sem_wait ()

int sem_wait (
sem_t *sem

);

 Standard wait

 If the semaphore is equal to 0, it blocks the caller
until it can decrease the value of the semaphore

54Operating Systems

sem_trywait ()

int sem_trywait (
sem_t *sem

);

 Non-blocking wait

 If the semaphore counter has a value greater than
0, perform the decrement, and returns 0

 If the semaphore is equal to 0, returns -1 (instead
of blocking the caller as sem_wait does)

55Operating Systems

sem_post ()

int sem_post (
sem_t *sem

);

 Standard signal

 Increments the semaphore counter, or wakes up a
blocked thread if present

56Operating Systems

sem_getvalue ()

int sem_getvalue (
sem_t *sem,
int *valP

);

 Allows obtaining the value of the semaphore
counter

 The value is assigned to *valP

 If there are waiting threads

 0 is assigned to *valP (Linux)

 or a negative number whose absolute value is equal
to the number of processes waiting (POSIX)

Better not to use this function. From Linux
manual: "The value of the semaphore may already
have changed by the time sem_getvalue() returns."

57Operating Systems

sem_destroy ()

int sem_destroy (
sem_t *sem

);

 Destroys the semaphore at the address pointed
by sem

 Destroying a semaphore that other threads are
currently blocked on produces undefined behavior
(on error, -1 is returned)

 Using a semaphore that has been destroyed
produces undefined results, until the semaphore
has been reinitialized

58Operating Systems

Example

#include "semaphore.h"

sem_t *sem;
sem = (sem_t *)

malloc(sizeof(sem_t));
sem_init (sem, 0, 0);

... create threads ...

sem_destroy (sem);

sem_wait (sem);
... SC ...
sem_post (sem);

#include "semaphore.h"

sem_t sem;
sem_init (&sem, 0, 0);

... create threads ...

sem_destroy (&sem);

sem_wait (&sem);
... SC ...
sem_post (&sem);

The use of the sem_*
POSIX functions for

synchronization

Static semaphore

Dynamic
semaphore

59Operating Systems

 Binary semaphores (mutex)

 A mutex is of type pthread_mutex_t

 System calls

 pthread_mutex_init

 pthread_mutex_lock

 pthread_mutex_trylock

 pthread_mutex_unlock

 pthread_mutex_destroy

Pthread mutex

Alternative to sem_xxxx primitives, mutex is
less general than semaphores (i.e., they can

assume only the two values 0 or 1)

60Operating Systems

pthread_mutex_init ()

int pthread_mutex_init (
pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr

);

 Initializes the mutex referenced by mutex with
attributes specified by attr (default=NULL)

 Return value

 0 on success

 Error code otherwise

61Operating Systems

pthread_mutex_lock ()

int pthread_mutex_lock (
pthread_mutex_t *mutex

);

 Control the value of mutex and

 Blocks the caller if the mutex is locked

 Acquire the mutex lock if the mutex is unlocked

 Return value

 0 on success

 Error code otherwise

62Operating Systems

pthread_mutex_trylock ()

int pthread_mutex_trylock (
pthread_mutex_t *mutex

);

 Similar to pthread_mutex_lock, but returns
without blocking the caller if the mutex is locked

 Return value

 0 if the lock has been successfully acquired

 EBUSY error if the mutex was already locked by

another thread

63Operating Systems

pthread_mutex_unlock ()

int pthread_mutex_unlock (
pthread_mutex_t *mutex

);

 Release the mutex lock (typically at the end of a
Critical Section)

 Return value

 0 on success

 Error code otherwise

64Operating Systems

pthread_mutex_destroy ()

int pthread_mutex_destroy (
pthread_mutex_t *mutex

);

 Free mutex memory

 The mutex cannot be used any more

 Return value

 0 on success

 Error code otherwise

