Definition and modeling
Stefano Quer, Pietro Laface, and Stefano Scanzio
Dipartimento di Automatica e Informatica
Politecnico di Torino
skenz.it/os stefano.scanzio@polito.it

Operating Systems 7 2

Deadlock

+» Condition for deadlock

» A P/T requires an unavailable resource, it enters a
waiting state, and it waits forever
< Deadlock consists in

> A set of P/T all awaiting the occurrence of an
event that can only be caused by another process
in the same set

< Deadlock implies starvation, not the opposite

» The starvation of a P/T implies that this P/T waits
indefinitely, but the other P/T can proceed in the
usual way (without being in deadlock)

> All P/T in deadlock are in starvation

Operating Systems ey § 3

The Deadlock Problem

% A set of blocked processes each holding a resource and
waiting to acquire a resource held by another process in
the set.

» Example: Py and P,
= each of them holds a pen drive and
= needs another one.

» Solution with 2 semaphores A and B, initialized to 1
P4 P>
wait (A) wait(B)
wait (B) wait(A)

Operating Systems

|

Conditions
Mutual exclusion

Hold and wait

No preemption

Circular wait

All must occur
simultaneously to
have a deadlock

Description

Only one process at a time can use a not sharable
resource

A process holding at least one resource is allowed to
wait for acquiring additional resources held by other
processes

A resource can be released only voluntarily by the
process holding it, cannot be preempted by the
system.

A set of waiting processes {#,, P,, ..., P.} such that
P, is waiting for a resource that is held by P,,
P, is waiting for a resource that is held by P,

and P, is waiting for a resource that is held by P,

Necessary but not sufficient conditions.
They are distinct but not independent (e.g., 4->2)

Operating Systems ey | D

< Deadlock modeling
< Management strategies

o

> Ignore Ignore the problem assuming the probability of a

deadlock in the system is very low

« Method used by many operating systems, including
Windows and Unix

 Less appropriate if concurrency and complexity of the

[This section 01 system increase j

» A posteriori

= Detect a In case of deadlock]
= Recovery

> A priori @M
= Prevent

[Section 03 L Avoid In case of possibility of deadlock]
= AvOoldance :; [

Operating Systems 7~ 6

‘e

Deadlock modeling

<+ Resource allocation graph G = (V, E)
» Allows deadlock description and analysis

% The set of vertices V is composed of processes
and resources

> Process set P = {P,, P, ..., P}

= Processes are indistinguishable and in an indefinite
number

= Each process accesses a resource via a standard
protocol consisting of
e Request
e Utilization
e Release

Operating Systems . 117= /A

Modeling

» System resource set R = {R, R,, ..., R}
= The resources are divided into classes (types)
= Each resource type R; has W, instances

= All instances of a class are identical: any instance
satisfies a demand for that type of resource

If not, it would be
necessary to

% The set of edges E is composed of reformulate the
- - - - I
> Request e dges division into classes y
= P, — R i.e., from a process to a resource type

» Assignment edge
" Ry —> P, l.e, from a resource to a process

Operating Systems 8

Modeling
Vertices: Processes R, R, Vertices: Resources
Py, Py, Ps . . An instance of R; and R,
\ \
P, holds R,
and is
waiting for
R,

\ /
®

o o
Assignment edge: °

P, holds R, R,

Vertices: Resources
R, and R, with 2 and 3 instances, respectively

P, requests for a R,
type resource

Request edge: J

Operating Systems 9

Modeling

% A resource allocation graph can be sometime
simplified in a wait-for graph by
» deleting the resource vertices
» creating the edges between the remaining vertices

2 Use and consideration similar to the resource

allocation graph
@
| 7 e‘e'e
R

(a) (b)

Operating Systems 17 10

Modeling

» Sometimes it is useful to extend the resource-
allocation graph to a claim graph by

> adding a claim edge: P, --—+R; indicates that
process P,can ask resource R in the future

> A claim arc is R
represented by dashed line

1

Operating Systems L § e 11

Detection and recovery techniques

< The system is allowed to enter in a deadlock
state, to then intervene.

s+ Algorithm in two steps
> Deadlock detection (of deadlock condition)
= The system performs a deadlock detection algorithm

> Recovery from deadlock

= If deadlock has been detected, a recovery action is
performed

Operating Systems 17 12

Detection: strategies

% Given an allocation graph, deadlock can be
detected by checking for cycles

» If the graph contains no cycles, then there is no
deadlock

> If the graph contains one or more cycles then

= Deadlock exist if each type of resource has a single
instance

= Deadlock is possible if the are several instances
per resource type
e The presence of cycles is necessary but not sufficient

condition in the case of multiple instances per
resource type

For multiple instances see the
Banker’s Algorithm

L

Operating Systems v I3

++» Processes
> Pll P2/ P3
+» Resources

» Ry and R, with a single
Instance

% A cycle exists
< Deadlock

» P, waits for P,
» P, waits for P,

Operating Systems L § e 14

++» Processes
> Py, P, P, P,
+» Resources

» R; and R, with two
Instances

% A cycle exists
<+ No deadlock

» P, and P, can terminate

» P, can acquire R, and
terminate

» P5 can acquire R, and
terminate

Operating Systems

++» Processes R

» Py, Py, Ps

< Resources
» Ry and R5 with an instance
» R, with two instances
> R, with three instances
s+ Two cycles exist

% Deadlock
» P, waits for R, °

> P, waits for R, R
» P5 waits for R,

15

Operating Systems ey § 16

Detection: costs

% The detection phase has the high computational
cost

» An algorithm to detect a cycle in a graph is required
= The presence of cycles can be verified by a visit in depth

= A graph is acyclic if a visit in depth does not meet arcs
labeled "backward" directed to gray vertices

e If you reach a gray vertex, i.e., you cross a backward arc, you
have a cycle

= The computational cost of this operation is equal to
e O(|V|+|E]|) for representations with adjacency list

e O(|V|?) for representations with adjacency matrix

L

Operating Systems T = 74

Detection: costs

% When detection is performed?

» Every time a process makes a request not
immediately satisfied

> At fixed time intervals, e.qg., every 30 minutes

> At variable intervals of time, e.g., when the CPU
usage falls below a given threshold

Operating Systems . | 18

Recovery

% Different strategies are possible for deadlock
recovery

» Act on the vertex of allocation graphs
» Act on the arches of allocation graph

Operating Systems

19

|

Strategy

Terminate all
deadlocked
processes

Terminate a
process at a
time among
the ones in
deadlock

Preempt the
resources of a
deadlocked process
at a time

Description

Complexity: low, but easy to cause
inconsistencies on databases

Cost: much higher than it might be strictly
necessary

Complexity: high, since it is necessary to
select the victims with objective criteria (priority,
current and future execution time, number of
held resources, etc.)

Cost: high, after each termination must re-
check the deadlock condition

Complexity: rollback is necessary to return the
selected process to a safe state

Cost: the victim process selection must aim at
minimizing the preemption cost

Operating Systems

20

|

Strategy

Remove
holding arcs
(i.e., specific
resources)

Remove
waiting arcs

Best strategy

Description

Complexity: rollback is necessary to return the
selected process to a safe state. The arc must
be properly selected.

Cost: the victim process selection must aim at
minimizing the preemption cost.

Same as preemption strategy.

Complexity: The arc must be properly
selected.

Cost: the victim must manage only the failure
of a resource request (e.g., a malloc that returns
with an error message).

Operating Systems L § e 21

‘e

%+ Detection and recovery operations are
> logically complex
» computationally expensive
% In any case, if a process requires many
resources, starvation may occur

» The same process is repeatedly chosen as the
victim, incurring repeated rollbacks
= To avoid starvation the victim selection algorithm

should take into account the number of a process
rollbacks

