
Deadlock

Deadlock avoidance techniques
Stefano Quer, Pietro Laface, and Stefano Scanzio

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

2Operating Systems

Deadlock avoidance

 Deadlock avoidance techniques force the
processes to provide (a priori) additional
information about the requests they will perform
during their execution

 Each process must indicate how many resources of
all types it will need to terminate its task

 This information allows a process scheduling order
so that there is the guarantee of no deadlock

 If granting immediately a requested resource to a
process can cause deadlock, the process is forced to
wait (by not assigning the resource to the process)

3Operating Systems

Deadlock avoidance

 The main algorithms

 differ in the amount and type of information
required

 The simplest model imposes that all processes
declare the maximum number of resources of each
type that they will need

 generally reduce the use of resources and the
efficiency of the system

 are based on the concept of safe state and safe
sequence

4Operating Systems

Safe state

Safe state The system is able to
• Allocate the required resources to all

processes
• Prevent the occurrence of a deadlock
• Find a safe sequence

Safe sequence A sequence of process scheduling {P1, P2, ...,
Pn} such that for each requests that could be
performed by any Pi, the request can be
satisfied by using the currently available
resources and the other resources released by
processes Pj with j < i

Unsafe states

Safe states

A state is said unsafe if it is not
safe.

An unsafe state is not necessarily
a deadlock state. It can leads to a
deadlock state in case of standard

behavior.

Deadlock

5Operating Systems

Unsafe region
deadlock at top-right point

Joint progress of two processes

P2 Progress

P1 progressP1: Use of HD

P1: Use of USB-drive

P2:
Use of HD

P2:
Use of

USB-drive

Single CPU

horizontal or vertical
sub-paths

Use of USB-drive by P1 and P2

Use of HD by P1 and P2

Use of USB-drive
by P1 and P2

Resource trajectory Safe / unsafe states in
terms of the joint

progress of 2 processes

6Operating Systems

Strategies

 To avoid a deadlock, one must ensure that the
system remains always in a safe state

 Initially the system is in a safe state

 Each new resource request

 will be granted immediately, if this allows the
system to remain in a safe state

 otherwise, granting the request will be delayed;
the process that performed the request is forced to
wait

 There are two classes of strategies

 For resources having unitary instances

 For resources having multiple instances

7Operating Systems

Release

Assignment

Algorithm for resources with a single instance

 Based on the determination of cycles, using the
claim-for graph

 All requests must be a priori declared

 they are represented by claim arcs

 At a time a request is performed

 the corresponding claim arc is transformed into an
assignment arc

 Before the request is satisfied, the algorithm verify
the presence of cycles

8Operating Systems

Release

Assignment

Algorithm for resources with a single instance

 If no cycle is present, the conversion of the arc is
performed and the resource assigned

 Otherwise, the assignment of the requested
resource would bring the system into an unsafe
state. For this reason it is postponed

 Each time a resource is released

 the assignment arc is transformed into a claim arc
(to manage any subsequent request)

9Operating Systems

 Verify the state of the system to understand if
the available resources are sufficient to complete
all processes based on

 the number of resources available to the system,

 number of resources allocated, and

 max number of resource that the process may need

 Each process

 must declare in advance its maximum number of
resources it may need

 when it requests a resource, it can be blocked for
a limited amount of time

 must guarantee to return an allocated resource in
a finite amount of time

Algorithm for resources with multiple instances

10Operating Systems

 Banker's Algorithm (Dijkstra, [1965])

 It consists of two parts

 Verifies that the current state is safe

 Verifies whether the new request can be
immediately granted allowing to system to remain in
a safe state

● Simulates assigning the resource, and controls that a
sequence of assignments exists that allows the
system to satisfy all requests, possibly delaying the
delivery of the resources for some of the requests.

 The algorithm uses the data structures listed in
the following slide

Algorithm for resources with multiple instances

11Operating Systems

Algorithm for multiple instances

Name Dim. Content and meaning

finish [n] finish[r] initially false (indicates Pr has not compete)

allocation [n][m] allocation[r][c]=k
Pr owns k instances of Rc

max [n][m] max [r][c]=k
Pr can ask a maximum of k instances of Rc

need [n][m] need[r][c]=k
Pr needs k additional instances of Rc

∀i∀j need[i][j]=max[i][j]-allocation[i][j]

available [m] available[c]=k
k resources Rc are available

Given a set of:
• n processes Pr

• m resources Rc

12Operating Systems

Example

 By applying the banker algorithm, the underlying
system is in a safe state?

 Safe sequence: P1, P3, P0, P2, P4

P finish allocation max need available

R0 R1 R2 R0 R1 R2 R0 R1 R2 R0 R1 R2

P0 F 0 1 0 7 5 3 3 3 2

P1 F 2 0 0 3 2 2

P2 F 3 0 2 9 0 2

P3 F 2 1 1 2 2 2

P4 F 0 0 2 4 3 3

13Operating Systems

Example

 Can the request of P1 (1, 0, 2) be satisfied?

 Yes ...

 System state evolution …

P finish allocation max need available

R0 R1 R2 R0 R1 R2 R0 R1 R2 R0 R1 R2

P0 F 0 1 0 7 5 3 7 4 3 3 3 2

P1 F 2 0 0 3 2 2 1 2 2

P2 F 3 0 2 9 0 2 6 0 0

P3 F 2 1 1 2 2 2 0 1 1

P4 F 0 0 2 4 3 3 4 3 1

2 3 0

0 2 03 0 2

14Operating Systems

Example

 The new state is safe or not?

 Safe sequence: P1, P3, P0, P4, P2

P finish allocation max need available

R0 R1 R2 R0 R1 R2 R0 R1 R2 R0 R1 R2

P0 F 0 1 0 7 5 3 7 4 3 2 3 0

P1 F 3 0 2 3 2 2 0 2 0

P2 F 3 0 2 9 0 2 6 0 0

P3 F 2 1 1 2 2 2 0 1 1

P4 F 0 0 2 4 3 3 4 3 1

15Operating Systems

Example

 Can the request of P4 (3, 3, 0) be satisfied?

 No … there is not availability (-> wait)

 Can the request of P0 (0, 3, 0) be satisfied?

 No … the resulting state is not safe

P finish allocation max need available

R0 R1 R2 R0 R1 R2 R0 R1 R2 R0 R1 R2

P0 F 0 1 0 7 5 3 7 4 3 2 3 0

P1 F 3 0 2 3 2 2 0 2 0

P2 F 3 0 2 9 0 2 6 0 0

P3 F 2 1 1 2 2 2 0 1 1

P4 F 0 0 2 4 3 3 4 3 1

Same initial state

16Operating Systems

if

∀∀∀∀j Request[i][j]≤≤≤≤ Need [i][j] (otherwise WAIT)

AND

∀∀∀∀j Request[i][j]≤≤≤≤ Available[j] (otherwise ERROR)

THEN

∀∀∀∀j Available[j]= Available[j]-Request[i][j]

∀∀∀∀j Allocation[i][j]= Allocation[i][j]+Request[i][j]

∀∀∀∀j Need[i][j]=Need[i][j]-Request[i][j]

if the resulting state is safe

this new state is confirmed

Else

the previous state is restored (and WAIT)

 Verification of a request from Pi

Banker's algorithm

17Operating Systems

1.

∀∀∀∀i∀∀∀∀j need[i][j]= max[i][j] - allocation[i][j]

∀∀∀∀i finish[i]=false

2.

Find a process Pi such that

finish[i]=false AND ∀∀∀∀j need[i][j] <= available[j]

If no such i is found goto step 4

3.

∀∀∀∀j available[j] += allocation[i][j]

finish[i]=true

goto step 2

4.

if ∀∀∀∀i finish[i]=true then

system is in a safe state

 Verify whether a state is safe or unsafe

Banker's algorithm

18Operating Systems

Exercise

 Can the request of P1 (1, 0, 1) be satisfied?

 Yes …

 Can the request of P1 (1, 0, 1) be satisfied?

 No … the resulting state is not safe

P finish allocation max need available

R0 R1 R2 R0 R1 R2 R0 R1 R2 R0 R1 R2

P0 F 1 0 0 3 2 2 1 1 2

P1 F 5 1 1 6 1 3

P2 F 2 1 1 3 1 4

P3 F 0 0 2 4 2 2

19Operating Systems

Exercise

 Are the following states safe or unsafe?

 (single resource problems)
P F A M N AV

P0 F 3 9 3

P1 F 2 4

P2 F 2 7

P F A M N AV

P0 F 4 9 2

P1 F 2 4

P2 F 2 7

… safe state

… unsafe state

20Operating Systems

 Complexity is

 O (m ⋅ n2) = O (|R| ⋅ |P|2)

 It is also based on unrealistic assumptions

 Processes must specify their demands in advance

 The necessary resources are not always known

 Also it is not known when a resource will be used

 Assumes that the number of resources is constant

 Resources may increase or decrease due to transient
or continuous failures

 It requires a fixed population of processes

 The number of active processes in the system
increases and decreases dynamically

Banker's algorithm

