
AWK

AWK
Stefano Quer and Pietro Laface

Dipartimento di Automatica e Informatica

Politecnico di Torino

skenz.it/os stefano.scanzio@polito.it

https://www.skenz.it/os

2Operating Systems

Introduction

 Introduced in 1977 by A. V. Aho, P. J.
Weinberger, B. W. Kernighan

 Process text files

 Extracting data

 Performing statistics

 Text processing

 etc.

3Operating Systems

 Main features

 automatically separates text input into records and
records into fields

 Records and fields are automatically numbered

 It allows

 Using regular expressions

 C syntax: variables, operators, constructs, etc.

 An AWK command can be run through

 the command line

 script files

Introduction

4Operating Systems

Command line execution

awk [options] 'command' [file1] … [filen]

awk [options] –f command_file [file1] … [filen]

-v var=val

Defines variable var and
set its value

[filei]: command
is applied to one

or more files

single command

File including
sequences of
commands

Executes the
commands in

command file on each

file [filei]

5Operating Systems

Script execution

#!/usr/bin/awk

...

commands

...

Definition of script
(script.awk)

Or : /bin/awk (which awk)

script.awk [file1] … [filen]

Script execution
(file must have x permission

6Operating Systems

Records and Fields

 AWK automatically splits the input file into
records

 The record separator is defined by the contents of
the built-in variable RS

 The default record separator '\n'

 RS value can be replaced by another string

 Records are processed one at a time

7Operating Systems

Records and Fields

 AWK automatically splits each record into fields

 The Field Separator is defined by the contents of
the built-in variable FS

 The default field separator is any sequence of the
space characters

 FS value can be replaced by another string

8Operating Systems

Records and Fields

 Some other predefined variables allow the
manipulation of records and fields

 NR

 Number of read records

 $0

 Indicates the entire record

string1 string2 abc

1234 657 string3 12.3

Zzzz 123.45

NR = 1, 2, 3

NR

$0

For multiple input files NR
is the total number of read

records, whereas FNR
variable resets itself for

each file of the
command line

9Operating Systems

Records and Fields

 NF

 Number of current record fields

 $1, $2, …, $NF

 Indicate the sequence of fields

 If last field is $5, $6 is a null string

string1 string2 abc

1234 657 string3 12.3

Zzzz 123.45NR=1  NF=3
NR=2  NF=4
NR=3  NF=2

NR

NF

$1 $NF

10Operating Systems

Commands

 An AWK script consists of a sequence of
commands

 Each command has the following format

condition {action}

 In AWK the condition is usually called pattern

 For each record of the input file

 If the pattern (condition) matches, the
corresponding action is executed

11Operating Systems

Commands

 Normally a condition is associated with an action

 A condition with no action prints each record
that matches the condition

 In other words, the default action is the command
print

 If the condition is missing the corresponding
action, the pattern matching is considered TRUE,
thus the action is executed on every record of
the file

12Operating Systems

 Null -> action is executed for each record

 /regExp/

 Regular expression(similar to find, grep, sed, …, but
different)

 True if the record matches the regExpr

 exp

 Logical expression, true if not zero or not null

 exp1, exp2

 Pair of comma separated expressions

 Specify a range of records

● The condition is true from the record matching the
first condition to the record matching the second
condition (included)

Conditions

Numeric values

Strings

13Operating Systems

 BEGIN

 Special condition

● Commands executed before reading the input file(s)

 END

 Special condition

● Commands executed after all the records of the
input file have been processed

Conditions

14Operating Systems

Operators and expressions

 Operators

 Arithmetic

 +, -, *, /, %, ^ (or **)

 String concatenation

 str1 str2 str3 ...

 Comparison

 ==, !=, <, >, <=, >=

 Logical

 &&, ||, ! (negation)

 Comparison with regular expressions

 ~, !~
Cannot use == or !=

with a regExp

15Operating Systems

Conditions examples

The record must contain "foo"

/foo/

Field #2, is exactly "foo"

$2 == "foo"

Condition true from the record with $1

equal to "rm" to the record with $1 equal "ls"

$1 == "rm", $1 = "ls"

$1 must contain character 'J'

$1 ~ /J/

The record must contain "2400" and "bar"

/2400/ && /bar/

The record must not contain "xxx"

!~ /xxx/

16Operating Systems

Actions

 An action may include

 All the major C language operators

 Several typical AWK operators

 Among them

 Functions for input and output

 Operators and expressions

 Scalar variables

 Control and iteration constructs

 Vector variables (associative, i.e., hash-table)

 functions

17Operating Systems

 AWK takes its input stream from

 Files

 The files are listed in the command line, and
sequentially processed

 The built-in variable FILENAME indicates the

currently processes file

 Standard input

 In this case FILENAME is equal to "-"

 Additional files can be processed by using the
getline command (described later)

Input

18Operating Systems

 The arguments on the command line are stored in
the predefined variables ARGC and ARGV

 ARGV[0]

 Stores the name of the script

 ARGV[1] ... ARGV[ARGC-1]

 Store the arguments

 They can be modified at run-time

 Decrementing ARGC or storing "" in ARGV[i]

deletes a file from the input stream

Input

for (i=0; i<ARGC; i++)

print ARGV[i]
Displays the

command line

19Operating Systems

 The output commands are quite standard

 print [p1] ... [pn] [> file]

 If the arguments pi are not separated by commas

● they are printed without the separator

 Print is completed by a newline

 Output can be redirected to a file

 printf (format, ...) [> file]

 Print formatted with C-like syntax

 Output can be redirected to a file

Output

Format string
inside ”” or

given as a
variable

20Operating Systems

Variables

 Definition

 Have not associated type

 Are considered strings or floating-point numbers
depending on the context

 Numeric variables are automatically initialized to 0

 String variables are automatically initialized to ””

 Usage

 C-like

 Character $ is not needed as imposed by bash

21Operating Systems

Control and iteration statements

 AWK defines all main statement occurring in C
language

 Conditional

 if

 Iterative

 while, do-while, for

 Flow control

 break, continue

 exit

● Goes to the end of the file, and executes pattern
END, if it exists.

 next

● Skips next record of the file

22Operating Systems

"one-line" examples

> awk '/foo/ {print $1, $NF}' file.txt

> awk '$1 ~ /foo/ {print $0}' file.txt

> awk '{if ($1 ~ /foo/) print $0}' file.txt

> awk '{print $NR}' myFile.txt

> awk '{if (NF > 0) print $0}' in.txt

> awk 'length($0) > 80' in.txt

> awk '{$2 = $2 – 10; print $2}' \

file.txt

Prints the first and last field
of the lines including string "foo"

Prints all lines
whose first field

includes string "foo"

Prints the i-th field
of the i-th line

Prints the lines with
at least one field

Prints the lines with
length greater than 80

characters
Modifies field 2, and
prints its new value

23Operating Systems

"one-line" examples

> awk '{v=($5+$4+$3+$2) ; \

print v}' file.txt

> awk '{$6=($5+$4+$3+$2) ; \

print $6; print $0 >> "out.txt"}' file.txt

> awk –v var=f.txt '{$6=($5+$4+$3+$2); \

print $6; print $0 >> var}' file.txt

> awk '{if (NF > max) max = NF}

END {print max }' file.txt

> awk 'BEGIN {print "Analysis of foo"}

/foo/ {++n}

END {print "foo appears " n " times."}'

file.txt

Computes the sum, and prints the result

Prints the maximum
number of fields

found in all records
of a file

Print the number of lines that include
string "foo"

Output redirection
on file out.txt

Output on
file f.txt

24Operating Systems

Example

#!/usr/bin/awk –f

BEGIN {

SIZE = 80

}

{

len = length($0);

for (i=0; i<(SIZE-len)/2; i++)

printf " ";

printf "%s", $0;

for (i=0; i<(SIZE-len)/2; i++)

printf " ";

printf "\n";

}

Prints, centered,
the lines of a file

Line width SIZE

(characters)

25Operating Systems

Arrays

 In AWK arrays are associative

 In practice, they are implemented as a hash table

 The index is a string (even if it is a number)

 It is the key of the hash table

 The value of the element can be of any type
(integer, string, etc.)

 There is no need to specify the size of an array

 An assignment to a new element adds that item
to the array (a new association <key-value> is
added to the hash table)

26Operating Systems

Arrays

 Operations

 Assigning an element
 arrayName [index] = value

 Reference an element
 arrayName [index]

 If the element does not exist is the 0 or the null
string is returned (depending on context)

 Deleting an element or an entire array
 delete arrayName [index]

 delete arrayName

27Operating Systems

Arrays

 Operator in

 index in arrayName

 allows verifying the existence of a specific array
index (key)

 if (index in arrayName) ...

 for (var in array)

 Variable var takes the value of each element of the

array (i.e., of each key of the hash table, the order
depends on the hash table implementation)

Condition TRUE if index
exists in arrayName

28Operating Systems

Multi-dimensional arrays

 It is possible to simulate multi-dimensional arrays

 An element is identified by a sequence of indices,
which are concatenated into one string using a
separator character

 symbol '@' is the default separator character,
defined in the predefined variable SUBSEP

 pixel[x,y] is converted into pixel["x@y"]

 vet[a,b,c], vet ["a","b @ c"], vet ["a @ b @ c"] are
indistinguishable, because their key is "a@b@c"

 Operator

 (index1, index2, ...) in arrayName

29Operating Systems

Example

Notice: indices of arrays are strings

An index not initialized corresponds to

string "", not to 0

vet[index]=5

Notice: the void string exists in the array:

it is key ""

vet[4] = ""

if (4 in vet)

print "element exists"

delete vet[4]

if (4 in vet)

print " element exists " # is not printed

30Operating Systems

Example

#!/usr/bin/awk –f

BEGIN {

n = 1

}

{

array[n] = $0

n++

}

END {

for (i=n-1; i>0; i--)

print array[i]

}

Prints in reverse
order the lines of a

file: last line
becomes the first,

and vice-versa

31Operating Systems

Example

#!/usr/bin/awk –f

{

for (i=1; i<=NF; i++)

freq[$i]++

}

END {

for (word in freq) {

printf "%s\t%d\n", word, freq[word]

if (length(word) > 10) {

++num_long_words

}

}

print "NumLongWord:" num_long_words

}

Prints the absolute
frequency of the

words in a file, and
then the number of

those having more than
10 characters

32Operating Systems

Example

#!/usr/bin/awk –f

{

if (maxNC < NF)

maxNC = NF

maxNR = NR

for (i=1; i<=NF; i++)

matrix[NR, i] = $i

}

END {

for (c=1; c<=maxNC; c++) {

for (r=1; r<=maxNR; r++)

printf("%s ", matrix[r, c])

printf("\n")

}

}

Reads a matrix
and computes
the dimensions
of its rows and

colums

Displays the
transpose matrix

33Operating Systems

getline command

 The getline command allows

 Reading the next record

 Reading a record from another
 getline [var] [<otherFile]

 Reads the next record

 From the current file (from otherFile)

 In var (or in $0 if var is not indicated)

 Return value

 1 if it reads a record

 0 at the EOF

otherFile defined by:
• A string
• ARGV [i]
• An external variable

(-v var = ...)

34Operating Systems

getline examples

getline < "new.txt"

getline tmp < ARGV[2]

getline

getline tmp

Reads in $0 the next line from
the input file, ($0 of the

previous read line is overwritten)

Reads in tmp the next line
from the input file. $0 and NF

do not change, the fields in
tmp are not split

Reads in $0 the next line from
file new.txt, ($0 of the

previous read line is overwritten)

Reads in tmp the next line from a

file given in the command line.
$0 and NF do not change, the

fields in tmp are not split

35Operating Systems

Example

#!/usr/bin/awk –f

{

if (getline tmp) {

print tmp

print $0

} else {

print $0

}

}

Swaps even and odd
lines of a the input file

If getline returns 0 the

file is terminated with an
"odd position line"

Reads odd lines
NR=1,3,5,..

Block of statements executed for
every line of a file

36Operating Systems

Example

#!/usr/bin/awk -f

BEGIN {

while (getline < "voc.txt")

voc[$1]=$2;

}

{

for(i=1; i<=NF; i++){

if ($i in voc) {

printf ("%s -> %s\n", $i, voc[$i]);

} else {

printf ("%s -> ?\n", $i);

}

}

}

Translates all the words in a
file using a vocabulary read

from file "voc.txt"

37Operating Systems

 It is possible to use predefined, or user functions

 numerical mathematical functions
 int(x), sqrt(x), exp(x), log(x),

sin(x), rand(), etc.

 Functions for string manipulation

 length(str)

 Returns the length of the string str

 If str is a number, returns the length of the

number converted to a string

 toupper(str), tolower(str)

 Return str converted to uppercase or lowercase

Functions

Not
introduced

38Operating Systems

 system(command)

 Executes a shell to run the command

 The input (output) of the shell command is not
available to the AWK script

 The AWK script only receives the termination code
of the system command

 Note that the shell commands can also be entered in
the AWK script simply specifying the command in
quotes

● "command"

 In this case the input and output of the command
must be managed directly from AWK script
(assigning to a variable, or piping the output to
getline)

Functions

39Operating Systems

Functions

awk '{print $1 | "sort" }' inFile.txt

system ("ls –laR /home/foo");

…

system ("ls –laR | sort");

Output is generated on
the shell that executes

the command

cmd = "ls –laR /home/foo";

while (cmd | getline > 0) {

...

}

close (cmd); A single pipe at a time
Close the pipe

Similar to reading from a file.
Output is generated on the

shell.

Sorts file
inFile.txt,

displays the sorted
output

awk '{print $1 | "sort > outFile.txt" }' inFile.txt

Sorts file inFile.txt, sorted output
goes on outFile.txt

40Operating Systems

 match(str, regExp)

 Search regular expression RegExp, in string str

 Returns the index of the first character of the first
occurrence of the substring of the string str that
matches RegExp

 Characters are numbered starting by 1

 Returns 0 if no match

Functions

index = match ($0, $2);

Returns the initial index of the
substring in current line, which

matches the string in $2,
or 0 if no matching

41Operating Systems

 gsub (regExp, str [, src])

 It replaces in string src each occurrence (not
overlapping) of the regular expression regexp with
the string str

 If src is not present, the replacement is carried out
in $0

 Character '&' in str is replaced with the string that

has matches

 Returns the number of substitutions

Functions

gsub (/husband/, "wife", str);

Replaces "husband"
with "wife" in str

gsub (/husband/, "& and wife");
Replaces "husband" with
"husband and wife"

in $0

42Operating Systems

 split (str, vet [, del])

 Splits string str in substrings according to a
delimiter del , each substring is stored in the vet

array

 Returns the number of vet array elements

Functions

split ("this-is-an-example", vet, "-");

Splits "this-is-an-example"
in 4 substrings delimited by "-“

vet[1]="this", vet[2]="is", vet[3]="an",

vet[4]="example", returns 4

43Operating Systems

 substr (str, i [, n])

 Return a maximum of n characters of string str
starting from its i-th character

 If n is not specified, returns the substring of str
that starts from its i-th character

Functions

substr (“Washington", 5);

Returns "ing"

Returns "ington"

substr (“Washington", 5, 3);

44Operating Systems

Exercise

 A text file does not contains punctuation
characters

 Write an script AWK that

 Takes the name of a file from the command line

 Displays the histogram of the number of
occurrences of all strings of length 5 containing at
least two vowels

45Operating Systems

Exercise

 Example

abbey enemy car stores abbey figure table

table enemy table

aaaaa source three

three #

table ###

aaaaa #

enemy ##

abbey ##

Content of the file

Script output

46Operating Systems

Solution

#!/usr/bin/awk -f

BEGIN {

vowels="aeiou"

}

Prepares the set
of characters of

interest

47Operating Systems

Solution

{

for(i=1;i<=NF;i++) {

if (length($i)==5) {

split($i,v,"");

found=0;

for(j=1;j<=5;j++) {

if (match(vowels,v[j]))

found++;

}

if (found>=2) {

count[$i]++;

if (count[$i] == 1)

words[$i]=$i;

}

}

}

}

Arrays count
and words are
indexed by the

same key

Splits each word
in characters

48Operating Systems

Solution

END {

for(w in words) {

printf "%s ", words[w];

for (j=1;j<=count[w];j++)

printf "#";

printf "\n";

}

}

For each word w in

words, get its count

49Operating Systems

Exercise

 Write an AWK script that

 Gets from the command line three filenames
(amount, price, and output)

 Displays

 The number of products that have their amount
specified but not their price

 The number of products that have their price specified
but not their amount

 For products that have both their price and amount
specified, a line for each product, specifying its total
availability, its average price, and the commercial
value of the product (product of amount and average
price). Save also this information in the output file

50Operating Systems

Solution

 Example Book 50.5

Pen 5.4

Pencil 2.0

Book 20.5

Pen 4.2

Pencil 1.0

Book 18.2

Jotter 12.3

Pen 30 4.8 144

Pencil 7 1.5 10.5

Book 13 29.7333 386.533

Warning: product Eraser has no price!

Warning: product Jotter has no quantity!

Book 3

Pen 10

Pencil 4

Book 2

Pen 20

Pencil 3

Eraser 3

Book 8

Eraser 1

Amount file

Price file

Output file

51Operating Systems

Solution

#!/usr/bin/awk -f

BEGIN {

fileO = ARGV[3];

ARGV[3] = "";

print "" > fileO

File 1 - Amount

while ((getline < ARGV[1])) {

q[$1] = q[$1] + $2;

n[$1]++;

}

File 2 - Price

while ((getline < ARGV[2])) {

p[$1] = p[$1] + $2;

}

}

Reset the output file

Save the output
filename, and clears

ARGV[3]

Notice: the input files are
read in the BEGIN section

Compute the total amount,
and the occurrences of

each product

Compute the sum of
the prices of each

product

52Operating Systems

Solution

END {

for (i in q) {

if (i in p) {

p[i] = p[i] / q[i];

print i " " q[i] " " p[i] " " q[i]*p[i];

print i " " q[i] " " p[i] " " q[i]*p[i] >> fileO

}

}

Displays, and generates
the output file

53Operating Systems

Solution

for (i in q) {

if (!(i in p)) {

print "Warning: product " i " has no price!"

}

}

for (i in p) {

if (!(i in q)) {

print "Warning: product " i " has no amount!"

}

}

}

Controls missing
information

