
1Laboratory N° 1

POLITECNICO DI TORINO

Stefano Scanzio

mail: stefano.scanzio@polito.it

Web: http://www.skenz.it/compilers

Formal Languages and Compilers

Laboratory N°1

2Laboratory N° 1

Languages?

 Lexicon (Lesson 1)

 Ask me no questions, I'll tell you no lies!

� Words should pertain to a known and defined dictionary

 Sak em on stinqueo, I’ll lelt uoy no leis!

 Scanner JFlex: lexical analyzer

 Syntax (Lessons 2,3)

 Ask me no questions, I'll tell you no lies!

� Words pattern is important!

 Me no questions ask, no ‘ll tell I you lies

 Parser Cup: syntax and semantic analyzer

 Semantic (Lessons 4,5)

 Switch on the light

 Int vect[12], myValue=3;

� Understanding the meaning of expressions

4Laboratory N° 1

JFlex – a lexical analyzers generator

JFLexJFLex
Regular

Expressions
Regular

Expressions
Java

Program
Java

Program

 Transforming regular expressions in deterministic
finite state automata and implementing them is a
long, mechanical (and tedious) process; hence, a
lexical analyzer (or scanner) automatic generator is
often used.

 JFlex is a generator which takes as input a set of
regular expressions and associated actions, and
produces as output a Java program that matches a
given input against them.

5Laboratory N° 1

Regular expressions in JFlex

 Regular expressions describe sequences of ASCII
characters using a set of operators:

 " \ [] ^ - ? . * + | () $ / { } % < >

 Letters and numbers in the input string are described by
the characters themselves:

 the regular expression val1 matches the input sequence 'v' 'a' 'l' '1'

 Non alphabetical characters must be written in quotation
marks, to avoid ambiguities with operators:

 the regular expression xyz"++" matches the input sequence 'x' 'y'
'z' '+' '+'

6Laboratory N° 1

 Non alphabetical characters can be also preceded by
the \ character

 the regular expression xyz\+\+ matches the input sequence 'x'
'y' 'z' '+' '+'.

 For operators: \" \\ \[\] \^ \- \? \. * \+ \| \(\) \$ \/ \{ \} \% \< \>

 Character classes are identified by square brackets []:

 the regular expression [0123456789] matches a digit in the
input text.

 In character classes, the – character is used to
describe a range of characters:

 the expression [0-9] matches a digit between 0 and 9

 the expression [a-z] matches any lower case letter

 the expression [a-zA-Z0-9] matches both lower case and
upper case letters, as well as numbers

Regular expressions in JFlex
...continues...

7Laboratory N° 1

 To include the character – in a character class, it must be
either the first or the last character within the brackets:

 the expression [-+0-9] matches a digit or a +/- sign in the input
string.

 The character ^ at the beginning of a character class
identifies a "negated character class", i.e. a list of
characters to be excluded

 the expression [^0-9] matches any character except digits.

 The symbol . (dot) identifies any character except newline.

Regular expressions in JFlex
...continues...

8Laboratory N° 1

 The newline character is described by the following regular
expression
 \n|\r|\r\n (\r line feed - \n carrige return)

 JFlex is written in Java, as a consequence generated scanners
must be portable on Windows, Linux and Mac OS operating
systems

 Note:

� \n | \r | \r\n -> matches one newline

� [\n\r]+ -> matches one or more newlines: \n\n\n\r\r

 The symbol \t identifies the tabulation character.

 The operator ? Indicates that the preceding expression is
optional

 the expression ab?c matches both ac and abc.

Regular expressions in JFlex
...continues...

9Laboratory N° 1

 The operator * indicates that the preceding expression can be
repeated 0 or more times:

 the expression ab*c matches all the sequences starting with a, terminating
with c and with any number of b’s in between.

 The operator + indicates that the preceding expression can be
repeated 1 or more times:

 the expression ab+c matches all the sequences starting with a, terminating
with c and with at least 1 b in between.

 abc, abbc, abbbc : OK

 ac : NO!!!

Regular expressions in JFlex
...continues...

10Laboratory N° 1

 The operator {n} represents n repetitions of the precedent regular
expression:

 ab{3}c matches the sequence abbbc

 The operator {n,m} represents a repetition of the precedent
regular expression between a minimum of n and a maximum of m
times:

 ab{2,4}c matches the sequences abbc, abbbc and abbbbc

 The operator | represents two alternative expressions:

 ab|cd matches both the sequences ab and cd.

 Parentheses are used to express or modify operators priority:

 (ab|cd+)?ef matches sequences such as ef, abef, cdddef.

Regular expressions in JFlex
...continues...

11Laboratory N° 1

Regular expressions in JFlex
...continues...

 Unsigned integer

 [0-9]+

 Unsigned integer without leading zeros

 [1-9][0-9]*

 Signed integer

 ("+"|"-")? [0-9]+

 Floating point number

 ("+"|"-")? ([1-9][0-9]* "." [0-9]*) | ("." [0-9]+) | (0 "." [0-9]*)

Single quotation marks allow to distinguish an input character ("+")
from an operator (+).

12Laboratory N° 1

 A JFlex source file has three distinct sections separated
by '%%'.

 The first section (code section) contains the user code and can
be empty.

 The second section (declarations section) contains option and
declarations.

 The third section (rules section) contains the lexical rules in the
form of regular_expression action pairs.

Code section

%%

Declarations section

%%

Rules section

Structure of a JFlex source file

14Laboratory N° 1

Code Section

 All the code lines present in this section are copied
without any modification in the generated scanner.

 Usually, import statement for Java libraries that will be
used in the next sections are inserted here.

 Examples:

import java.io.*; (if one wishes to use the Java I/O

library)

import java_cup.runtime.*; (for compatibility with

the Cup parser generator)

15Laboratory N° 1

Declarations section

 To simplify the use of complex or repetitive regular expressions, it is
possible to define identifiers for sub-expressions.

 Example: definition of a signed integer:

integer = [+-]?[1-9][0-9]*

 The sub-expression can then be used in the rules section or directly
in the declaration section, writing its name between braces:

{integer} {
System.out.print("integer found\n");

}

 Java code can be included in the declarations section by writing it
between '%{' and '%}'.

 See also %init{ ... %init} and %eof{ …%eof}

17Laboratory N° 1

Rules section

 In JFlex, each regular expression is associated to an
action, which is executed when the input matches the
regular expression.

 Actions are constituted by snippets of Java code, written
between braces.

 The simplest action consists in ignoring the matched
string and is expressed by an empty action {;}

ACTION:

\n | \r | \r\n {

System.out.println("newline found");

}

18Laboratory N° 1

 Returns the matched string (that is saved in a internal buffer) :

 string yytext()

 The number of matched character is returned by the method:

 int yylength()

 Returns the character at position pos.

 char yycharat(int pos)

 Contains the current line and column of input file, respectively.
Those variables have a meaningful value only if %line and
%column directives are declared.

 int yyline

 int yycolumn

 contains the current character count in the input (starting with 0,
only active with the %char directive)

 int yychar

Scanner methods and fields accessible in

actions

19Laboratory N° 1

Example

%%

curr = [1-9][0-9]*"."[0-9][0-9] | 0?"."[0-9][0-9]

Int = 0 | [1-9][0-9]*

%%

{curr} { System.out.println(“Curr: "+ yytext()); }

{int} { System.out.println(“Int: " + yytext()); }

INPUT OUTPUT

0.02 Curr: 0.02

.10 Curr: .10

2000.30 Curr: 2000.30

1.50 Curr: 1.50

15000 Int: 15000

20Laboratory N° 1

Compiling JFlex source

FILE: euroLire.jflex :

%%

%class Lexer

%standalone

curr = [1-9][0-9]*"."[0-9][0-9] | 0?"."[0-9][0-9]

Int = 0 | [1-9][0-9]*

%%

{curr} { System.out.println(“Curr: "+ yytext()); }

{int} { System.out.println(“Int: " + yytext()); }

 %standalone: generates the main method

 The main method accepts as input the list of file to be scanned.

 NB: with %standalone option, the default Jflex behaviour is to print
unmatched characters to stdout. Use . (dot) regular expression to manage
them.

 %class Lexer: the generated class is named Lexer.java

21Laboratory N° 1

Compiling JFlex source

 Compiling steps:

jflex euroLire.jflex

javac Lexer.java

java Lexer <nome_file_1> … <nome_file_n>

euroLire.jflex jflexjflex Lexer.java javacjavac Lexer.class

22Laboratory N° 1

Ambiguous Source Rules

 JFlex can handle ambiguous specifications.

 There are two main sources of ambiguity:

 the initial part of character sequences matched by one regular
expression is also matched by another regular expression.

 the same character sequence is matched by two distinct regular
expressions.

 The first case is handled by always selecting the regular
expression that gives the longest match.

 Among rules which matched the same number of
characters, the rule specified first in the source file is
preferred.

23Laboratory N° 1

Example

 Given the source file
%%

%%

for { System.out.println("FOR_CMD"); }

format { System.out.println("FORMAT_CMD"); }

[a-z]+ { System.out.println("GENERIC_ID"); }

 Given the input string "format", the scanner will print
FORMAT_CMD,

 Preferring the second rule to the first, because it gives a longer
match

 Preferring the second rule to the third, because it comes before
in the source file

24Laboratory N° 1

Given the rules for handling ambiguous specifications,
when analyzing a programming language it is necessary to
define first the rules for keywords, and then for identifiers.

 The longest match rule can result in unwanted behaviour:

\".*\" { System.out.println("QUOTED_STRING");}

tries to match the second single quotation mark as far as
possible (since longest matches are preferred); hence,
given the following input string

"first" quoted string here, "second" here

it will match 36 characters instead of 7.

A better regular expression is the following:

\"[^"]+\" { System.out.println("QUOTED_STRING"); }

\" ~ \" { System.out.println("QUOTED_STRING"); }

Ambiguous Source Rules

25Laboratory N° 1

Context

 It could be useful to limit the validity of a regular expression
to a determined context.

 There are different mechanisms to specify sensitivity to the
left context (i.e., the string that precedes the sequence being
matched) and to the right context (i.e., the string that follows
the sequence being matched).

Special techniques are used to handle the beginning and
the end of a line.

26Laboratory N° 1

Beginning and end of line

 The character '^' at the beginning of a regular expression

indicates that the sequence must be found at the beginning of
the line.

 This means that either the character sequence is at the beginning of the
input stream, or that the last character previously read was a newline.

 The character '$' at the end of a regular expression indicates

that the sequence must be followed by a newline character.

 By default, the newline is not matched by the regular
expression, and thus must be matched by another rule

 end$ The characters 'e' 'n' 'd' at the end of the line

 \r | \n | \r\n Matches the newline

27Laboratory N° 1

Sensitivity to the right context

 The binary operator '/' separates a regular expression from
its right context.

 Therefore, the expression

ab/cd

matches the string "ab", but if and only if is followed by the
string "cd".

 The characters forming the right context are read from the
input file, but are not part of the matched string. A suitable
buffer is defined by JFlex to hold such characters.

NB: The expression ab$ is equivalent to ab / (\n | \r | \r\n).

29Laboratory N° 1

Rule starting with

<state>

are active only when the scanner is in the state state.

Possible states must be declared in the declarations
section using the %state keyword.

 The default state is YYINITIAL.

 The scanner enters a state when the following action is
executed:

yybegin(state);

Start conditions (inclusive states)

30Laboratory N° 1

When a state is activated, the state rules are added
(inclusive or) to the other scanner base rules.

A state is active until another state is activated. To return to
the initial condition, one must activate the initial state by
means of the statement

yybegin(YYINITIAL);

A rule can be preceded by one or more state names,
separated by a comma, to indicate that it is active in each of
the states.

Start conditions (inclusive states)

...continues...

31Laboratory N° 1

Example

 The following program handles pseudo-comments of the form
// $var+

%%

%state comment

%%

<comment>\$[a-zA-Z]+[-+] {process(yytext());}

"//" {yybegin(comment);}

\n|\r|\r\n {yybegin(YYINITIAL);}

" " {;} /* ignore blanks*/

\t {;} /* and tabs */

... /* other rules */

32Laboratory N° 1

Combining more than one scanner
(exclusive states)

 A set of rules can be grouped within an exclusive state
as well.

 When the scanner enters an exclusive state:

 default rules are disabled,

 only the rules explicitly defined for the state are active.

 In this way, “mini-scanner” that deal with special sections
of the input stream, such as comments or strings, can be
defined.

 The %xstate keyword defines an exclusive state.

33Laboratory N° 1

Eliminating comments

 This scanner recognizes and eliminates C comments, while
counting the number of lines.

%%

%standalone

%xstate comment

%{

public int line_num = 1;

public int line_num_comment = 1;

%}

nl = \n | \r | \r\n

%%

{nl} { ++line_num; }

"/*" { yybegin(comment); }

<comment>[^*\r\n]* {;}

<comment>"*"+[^\/\r\n]* {;}

<comment>{nl} { ++line_num_comment; }

<comment>"*"+"/" { yybegin(YYINITIAL); }

... other rules

34Laboratory N° 1

End of file rule

 The special rule <<EOF>> introduces the action to be
performed when the end of file is reached.

<<EOF>>

{System.out.println(line_num+" "+line_num_comment);

return YYEOF;}

 This rule can be useful, coupled with start conditions, to detect
unbalanced parentheses (or braces, brackets, quotation
marks, ….) :

\" { yybegin(quote); }

...

<quote><<EOF>> { System.out.println("EOF in string"); }

35Laboratory N° 1

OTHER SLIDES

36Laboratory N° 1

File switching

 In many cases, a scanner must suspend the analysis of the
current file, and open another file:

 Example: #include directives of C language

 This is handled by JFlex by using a stack; a series of
primitives are available for file switching:

 If one wishes to start scanning another file, the current file is
pushed in the stack

 When the end of the current file is found, the previous file is popped
from the stack to resume the analysis

37Laboratory N° 1

File switching continues

 void yypushStream(java.io.Reader reader)

 Push the current stream in the stack and start reading the new stream.

 void yypopStream(void)

 Close the current stream and start reading from the stream on top of the
stack

 boolean yymoreStreams()

 Returns TRUE if the stream stack is not empty

Example:

"#include" {FILE} {

yypushStream(new FileReader(getFile(yytext())));

}

...

<<EOF>> {if(yymoreStreams())yypopStream();else return YYEOF;}

38Laboratory N° 1

Example of a parser that handles nested file inclusion.

File inclusion

import java.io.FileReader;

%%

%xstate INCL DELETENR

%standalone

%%

import {yybegin(INCL);}

.+ {System.out.print(yytext());}

/* Eliminate spaces and tabulations */

<INCL>[\t]* {;}

<INCL>[^ \t\n\r]+ { /* Push the file in the stack */

yypushStream(new FileReader(yytext()));

yybegin(YYINITIAL);

}

<DELETENR>[\t\n\r]* {yybegin(YYINITIAL);}

<<EOF>> { /* Pop the file from stack */

if(yymoreStreams()){

yypopStream();

yybegin(DELETENR);

}else return YYEOF;

}

