POLITECNICO DI TORINO

(01JEUHT) Formal Languages and Compilers
Laboratory N° 2

Stefano Scanzio
mail: stefano.scanzio@polito.it

Web: http://www.skenz.it/compilers

Parser and syntax analyzer

Given a non-ambiguous grammar and a sequence of input
symbols, a parser is a program that verifies whether the
sequence can be generated by means of a derivation from the
grammar.

A syntax analyzer (parser) is a program capable of associating
to the input sequence the correct parse tree.

Parsers can be classified as
® top-down (parse tree is built from the root to the leaves)
® bottom-up (parse tree is built from the leaves to the root) :

Scanning and parsing

Grammar (G):

E:=E+T
E.=ET

Scanner
(JFlex)

/

Parser

(Cup)

Generated
by G

Not
generated
by G

Context-Free Grammar Definition

A CF grammar is described by
T, NT, S, PR
T: Terminals / tokens of the language
NT: Non-terminals
Denote sets of strings generated by the grammar
S: Start symbol
Se NT

PR: Production rules

Indicate how T and NT are combined to generate valid strings
PR: NT =T |NT

Example

Derivation:

® A sequence of grammar rule applications and substitutions that transform
a starting non-terminal into a sequence of terminals (tokens).

assign_stmt ::= ID EQ expr S ;
expr 1= expr operator term ;
expr ;= term;

term ::= 1D ;

term ::= FLOAT ;

term ::= INT ;

operator ::= PLUS ;
operator ::= MIN ;

How bottom-up parsing works:
Shift/Reduce tecnique

A stack, initially empty, is used to keep track of symbols already
recognized.

Terminal symbols are pushed in the stack (), until the top of
the stack contains a handle (right hand side of a production):

the handle is then substituted by the corresponding non-
terminal ().

Note that the reduce operation may only be applied to the top of
the stack.

Parsing is successful only when at the end of the input stream
the stack contains only the start symbol

Parse Trees and Shift/Reduce

Input String: Recursive Left Grammar

al,az2,ad List ::= List CM EL
Scanner: List ::= EL
a1 a2 . a3 s EL CM EL CM EL

Action: Stack:
Parse Tree e
List Shift: EL
Reduce: List
List Shift: List CM
p Shift: List CM EL
List Reduce: List
| Shift: List CM
EL CM ELCM EL Shift: List CM EL
Reduce: List

Introduction to CUP

Cup is a parser generator that transforms the definition of a
context-free grammar in a Java program that parses sequences
of input symbols according to the grammar itself.

Besides defining syntax rules, it is possible to specify actions to
be executed whenever a production is reduced.

The parser must be integrated by a scanner: some conventions
simplify the integration of Cup-generated parses with JFlex-
generated scanners.

Official manual:
http://www2.cs.tum.edu/projects/cup/

Source file format

A Cup source file has a syntax very similar to Java programs.
It can be ideally divided in the following sections:

Setup

Terminals and non-Terminals
Precedences ()
Rules

Comments are allowed following Java syntax (included in /* and
*/, or preceded by //)

This section contains all the directives needed for the parser
Inclusion of Cup library and other libraries:
Import java_cup.runtime.”;

User code:
® Ridefinition of Cup internal methods
® Integration with scanner other than JFlex

It contains the definition of
® Terminals: passed by JFlex
® Non-Terminals
® The grammar start symbol

Start symbol
m start with <non_terminal _name> ;
® |t is the root of the parse tree
= Only one occurrence of this keyword is allowed

Terminals
terminal <terminal_1>,...,<terminal_n> ;
<terminal>: name containing letters, ' ', ." and digits (the first

character must be a letter)
Terminals are recognized by Jflex

Non-Terminals
non terminal <non_terminal_1>,...,<non_terminal n>;

<non_terminal>: name containing letters, ' ', "." and digits (the first
character must be a letter).

ID SO NUMSC S

|

Productions (grammal rules):
D —TVLS
VL— V
VL— VLCMV
V — PV
V. — Va
Va— Va SO NUM SC
Va— ID

Input string:
char *argv[10];

argv

[

10

]

—

Start symbol
start with D;

Non-Terminals

non terminal D, VL, V, Va;
(Note that the Start symbol is a
non-terminal)

Terminals
terminal T, P, ID, NUM;
terminal SO, SC, CM, S;

\

(Recognized by JFlex)

ID SO NUMSC S

P T

"

[

10

]

- >/ Input Sequence

The Rules section contains one or more productions in the form:
<non_terminal> ::= Right Hand_Side ;
where Right Hand Side is a sequence of 0 or more symbols.

To each prodution, an action can be associated, which must be
enclosed between {: and }

Note: the action is executed the operation takes place

Example:
D:=TVLS
{: System.out.printin("Declaration found"); :}

If more than one production exist for a given non-terminal, they
must be grouped and separated by '|'.

Es.
funz .= type ID ROVLRC S

{: System.out.printin("Function prototype"); :}
| type ID RO VL RC BO stmt_list BC

{: System.out.printin("Function"); :}

NB: the use of the "|" character generates two separates rules. It
IS Important to remember that the code between {: and 3} is
executed only when a giver rule is matched.

Example

import java_cup.runtime.¥*;

terminal T, P, ID, NUM, S, CM, SO, SC;
non terminal D, V, VL, Va;
start with D;

Productions:

D —~TVLS
D =T VL S ; VL— V
VL:.= v VL—™ VLCMYV
| VL CM V ; VPV
V — Va
V ::= PV Va— Va SO NUM SC
| Va ; Va— ID
Va::= Va SO NUM SC

| ID ;

Integrating JFlex and Cup
- > — 5 — 5
scameriiox Lltexd Vyexjava Laized Vyiexciass
- > — 5
a@ ™ RS

parser.cup

-
3 - 3
R i

Integrating JFlex and Cup

Parser and scanner must agree on the values associated to
each token (terminal)

When the scanner recognizes a token, it must pass a suitable
value to the parser. This is done by means of the Symbol class,
whose constructors are:

public Symbol(int sym_id)

public Symbol(int sym_id, int left, int right)

public Symbol(int sym_id, Object 0)

public Symbol(int sym_id, int left, int right, Object 0)

The class can be found in the cup installation directory:

When a terminal is defined by means of the terminal keyword,
Cup associated an integer value to that token.
Ee iy
This mapping is contained in the file generated by cup duringtae’

comiilini irocess

Integrating JFlex and Cup (2)

If in the parser the following list of terminal symbols has been
declared:

terminal T, P, ID, NUM, PV, CM, SO, SC, S;

They can be used inside the scanner and passed to the parser in
the following way:

o°
o°

o°
o°

[a—zA-Z] [a—zA-Z0-9]* {return new Symbol (sym.ID);}
\[{return new Symbol (sym.SO);}
\1] {return new Symbol (sym.SC);}
H/*H ~ H*/H { ;}

\r[\n|[\A\n|""]|\t {;}

— 5 . £ve .
B3 Scanner modifications

Include the Cup library () in the code section

Activate Cup compatibility by means of the directive in the
Declarations section

List —» List CM EL

%% List - EL
YoCUp

%%
[a-z]+ { }
(T3] {

—
The Cup parser

import java_cup.runtime.”;

terminal EL, CM; List —» List CM EL
non terminal List, EList; List - EL

start with EList;

EList ::= List {: System.out.printin("List found"); :} |
{: System.out.printin("Empty list"); :}

List ::= List CM EL

List ::= EL

)

== e

import java.io.”;

public class Main {
static public void main(String argv[]) {

try {
/* Instantiate the scanner and open input file argv[0] */
/* Instantiate the parser */

/* Start the parser */

} catch (Exception e) {
e.printStackTrace();

}

Compiling

o L oo L vioroess

e — —
e — e —

Wainjava L aae ol Wi class
jflex scanner.jflex

java java_cup.Main parser.cup
In the case of shift/reduce or reduce/reduce conflits:
java java_cup.Main —expect <number_of conflicts> parser.cup
java java_cup.MainDrawTree parser.cup \
Can be used in LABINF or at home installing a modified version off;)

=
vt

parser A T

S

The iarse tree is drawn (useful for debui(l;ini)

Compiling

scanreriox Ll d Vyiexjava_ligigedl Vyiexoiass
e— —
e — e —

Wainjava___lavac__ 8l Viain class_

javac Yylex.java sym.java parser.java Main.java
Or javac *.java
For the compilation of all the files of the project

java Main <file>
To execute the program using <file> a input

——
parser.cup

