
1Lab 2

POLITECNICO DI TORINO

Stefano Scanzio

mail: stefano.scanzio@polito.it

Web: http://www.skenz.it/compilers

(01JEUHT) Formal Languages and Compilers

Laboratory N°2

2Lab 2

Parser and syntax analyzer

 Given a non-ambiguous grammar and a sequence of input

symbols, a parser is a program that verifies whether the

sequence can be generated by means of a derivation from the

grammar.

 A syntax analyzer (parser) is a program capable of associating

to the input sequence the correct parse tree.

 Parsers can be classified as

 top-down (parse tree is built from the root to the leaves)

 bottom-up (parse tree is built from the leaves to the root) : CUP

3Lab 2

Scanning and parsing

Scanner

(JFlex)

Input:
3+2=

3*(8-4)=

NUM

PLUS

NUM

EQ

NUM

STAR

RO

NUM

MIN

NUM

RC

EQ

…

…

Parser

(Cup)

Grammar (G):
E ::=::=::=::= E ‘+’ T

E ::=::=::=::= E ‘-’ T

…

Generated
by G

Not
generated
by G

4Lab 2

Context-Free Grammar Definition

A CF grammar is described by

 T, NT, S, PR

 T: Terminals / tokens of the language

 NT: Non-terminals

 Denote sets of strings generated by the grammar

 S: Start symbol

 S ∈ NT

 PR: Production rules

 Indicate how T and NT are combined to generate valid strings

 PR: NT ::= T | NT

5Lab 2

Example

 Derivation:

 A sequence of grammar rule applications and substitutions that transform
a starting non-terminal into a sequence of terminals (tokens).

assign_stmt ::= ID EQ expr S ;

expr ::= expr operator term ;

expr ::= term ;

term ::= ID ;

term ::= FLOAT ;

term ::= INT ;

operator ::= PLUS ;

operator ::= MIN ;

8Lab 2

How bottom-up parsing works:

Shift/Reduce tecnique

 A stack, initially empty, is used to keep track of symbols already

recognized.

 Terminal symbols are pushed in the stack (shift), until the top of

the stack contains a handle (right hand side of a production):

the handle is then substituted by the corresponding non-

terminal (reduce).

 Note that the reduce operation may only be applied to the top of

the stack.

 Parsing is successful only when at the end of the input stream

the stack contains only the start symbol

10Lab 2

Parse Trees and Shift/Reduce

List ::=::=::=::= List CM EL

List ::=::=::=::= EL

List

List

List

Recursive Left GrammarInput String:
a1 , a2 , a3

Parse Tree
Action: Stack:

εεεε

Shift: EL

Reduce: List

Shift: List CM

Shift: List CM EL

Reduce: List

Shift: List CM

Shift: List CM EL

Reduce: List
EL EL ELCMCM

Scanner:
a1 , a2 , a3 →→→→ EL CM EL CM EL

18Lab 2

Introduction to CUP

 Cup is a parser generator that transforms the definition of a
context-free grammar in a Java program that parses sequences
of input symbols according to the grammar itself.

 Besides defining syntax rules, it is possible to specify actions to
be executed whenever a production is reduced.

 The parser must be integrated by a scanner: some conventions
simplify the integration of Cup-generated parses with JFlex-
generated scanners.

 Official manual:

http://www2.cs.tum.edu/projects/cup/

19Lab 2

Source file format

 A Cup source file has a syntax very similar to Java programs.

 It can be ideally divided in the following sections:

 Setup

 Terminals and non-Terminals

 Precedences (Next lesson)

 Rules

 Comments are allowed following Java syntax (included in /* and

*/, or preceded by //)

20Lab 2

Setup section

 This section contains all the directives needed for the parser

 Inclusion of Cup library and other libraries:

import java_cup.runtime.*;

 User code: (Next lesson)
 Ridefinition of Cup internal methods

 Integration with scanner other than JFlex

21Lab 2

Terminals / Non-Terminals section

 It contains the definition of

 Terminals: passed by JFlex

 Non-Terminals

 The grammar start symbol

 Start symbol

 start with <non_terminal_name> ;

 It is the root of the parse tree

 Only one occurrence of this keyword is allowed

22Lab 2

Terminals / Non-Terminals section

 Terminals

 terminal <terminal_1>,…,<terminal_n> ;

 <terminal>: name containing letters, '_', '.' and digits (the first

character must be a letter)

 Terminals are recognized by Jflex

 Non-Terminals

 non terminal <non_terminal_1>,…,<non_terminal_n> ;

 <non_terminal>: name containing letters, '_', '.' and digits (the first
character must be a letter).

25Lab 2

Terminals / Non-Terminals section

char * argv [10] ;

T ID NUM

Va

Va

V

V

VL

D

P SO SC S

D T VL S

VL V

VL VL CM V

V P V

V Va

Va Va SO NUM SC

Va ID

Productions (grammal rules):

Input string:
char *argv[10];

26Lab 2

Terminals / Non-Terminals section

char * argv [10] ;

T ID NUM

Va

Va

V

V

VL

D

P SO SC S

Start symbol

start with D;

Non-Terminals

non terminal D, VL, V, Va;

(Note that the Start symbol is a

non-terminal)

Terminals

terminal T, P, ID, NUM;

terminal SO, SC, CM, S;

(Recognized by JFlex)

Input Sequence

27Lab 2

Rules section

 The Rules section contains one or more productions in the form:

<non_terminal> ::= Right_Hand_Side ;

 where Right_Hand_Side is a sequence of 0 or more symbols.

 To each prodution, an action can be associated, which must be

enclosed between {: and :}

 Note: the action is executed just before the reduce operation takes place

 Example:

D ::= T VL S

{: System.out.println("Declaration found"); :}

;

28Lab 2

Rules section (2)

 If more than one production exist for a given non-terminal, they

must be grouped and separated by '|'.

 Es.

funz ::= type ID RO VL RC S
{: System.out.println("Function prototype"); :}

| type ID RO VL RC BO stmt_list BC
{: System.out.println("Function"); :}

;

 NB: the use of the "|" character generates two separates rules. It

is important to remember that the code between {: and :} is

executed only when a giver rule is matched.

29Lab 2

Rules section :
Example

import java_cup.runtime.*;

//Terminals / Non-Terminals Section
terminal T, P, ID, NUM, S, CM, SO, SC;
non terminal D, V, VL, Va;
start with D;

//Rule Section
D ::= T VL S ;

VL::= V
| VL CM V ;

V ::= P V
| Va ;

Va::= Va SO NUM SC
| ID ;

D T VL S

VL V

VL VL CM V

V P V

V Va

Va Va SO NUM SC

Va ID

Productions:

30Lab 2

Integrating JFlex and Cup

scanner.flex jflexjflex

parser.cup

Yylex.java

sym.java

parser.java

javacjavac

javacjavac

javacjavac

Yylex.class

sym.class

parser.class

Main.java javacjavac Main.class

31Lab 2

Integrating JFlex and Cup

 Parser and scanner must agree on the values associated to

each token (terminal)

 When the scanner recognizes a token, it must pass a suitable

value to the parser. This is done by means of the Symbol class,

whose constructors are:

 public Symbol(int sym_id)

 public Symbol(int sym_id, int left, int right)

 public Symbol(int sym_id, Object o)

 public Symbol(int sym_id, int left, int right, Object o)

 The class Symbol can be found in the cup installation directory:

 Java_cup/runtime/Symbol.java

 When a terminal is defined by means of the terminal keyword,

Cup associated an integer value to that token.

This mapping is contained in the file sym.java generated by cup during the
compiling process

32Lab 2

Integrating JFlex and Cup (2)

 If in the parser the following list of terminal symbols has been

declared:
terminal T, P, ID, NUM, PV, CM, SO, SC, S;

 They can be used inside the scanner and passed to the parser in

the following way:

…

%%

…

%%

[a-zA-Z_][a-zA-Z0-9_]* {return new Symbol(sym.ID);}

\[{return new Symbol(sym.SO);}

\] {return new Symbol(sym.SC);}

…

"/*" ~ "*/" {;}

\r | \n | \r\n | " " | \t {;}

33Lab 2

Scanner modifications

 Include the Cup library (java_cup.runtime.*) in the code section

 Activate Cup compatibility by means of the %cup directive in the

Declarations section

import java_cup.runtime.*;

…

%%

%cup

…

%%

[a-z]+ { return new Symbol(sym.EL); }

“,” { return new Symbol(sym.CM); }

scanner.flex

List →→→→ List CM EL

List → → → → EL

34Lab 2

The Cup parser

import java_cup.runtime.*;

terminal EL, CM;

non terminal List, EList;

start with EList;

EList ::= List {: System.out.println("List found"); :} |

{: System.out.println("Empty list"); :}

;

List ::= List CM EL

;

List ::= EL

;

parser.cup

List →→→→ List CM EL

List → → → → EL

35Lab 2

Main

import java.io.*;

public class Main {

static public void main(String argv[]) {

try {

/* Instantiate the scanner and open input file argv[0] */

Yylex l = new Yylex(new FileReader(argv[0]));

/* Instantiate the parser */

parser p = new parser(l);

/* Start the parser */

Object result = p.parse();

} catch (Exception e) {

e.printStackTrace();

}

}

}

Main.java

36Lab 2

Compiling

 jflex scanner.jflex

 java java_cup.Main parser.cup
 In the case of shift/reduce or reduce/reduce conflits:

 java java_cup.Main –expect <number_of_conflicts> parser.cup

 java java_cup.MainDrawTree parser.cup

 Can be used in LABINF or at home installing a modified version of the
parser

 The parse tree is drawn (useful for debugging)

scanner.flex jflexjflex

parser.cup

Yylex.java

sym.java

parser.java

javacjavac

javacjavac

javacjavac

Yylex.class

sym.class

parser.class

Main.java javacjavac Main.class

37Lab 2

Compiling

 javac Yylex.java sym.java parser.java Main.java
 Or javac *.java

 For the compilation of all the files of the project

 java Main <file>
 To execute the program using <file> a input

scanner.flex jflexjflex

parser.cup

Yylex.java

sym.java

parser.java

javacjavac

javacjavac

javacjavac

Yylex.class

sym.class

parser.class

Main.java javacjavac Main.class

