POLITECNICO DI TORINO

(01JEUHT) Formal Languages and Compilers
Laboratory N°3

Stefano Scanzio
Mail: stefano.scanzio@polito.it

Web: http://www.skenz.it/compilers

Cup Advanced Use

Grammars with ambiguities
Lists

Operator precedence
Handling syntax errors

Ambiguous grammars in CUP

Conflicts can arise when the grammar is ambiguous

This implies that the parser must choose between two or more
alternative actions.

The problem can be solved by modifying the grammar (in order
to make it non-ambiguous) or by instructing the parser on how
to handle ambiguity.

The latter option requires that the parsing algorithm is fully
understood, in order to avoid unwanted / wrong behaviours.

Ambiguous Grammar

A grammar is ambiguous if there is at least
for which two or more distinct exist.

Exercise: find all parse trees for
if (1==1) if (j==2) a=0; else a=1;

given the grammar:

S:=M

M:="if CM

M:="if CM'else' M
M:=ID'="NUM %' |ID'="ID"
C :='(' VAR '=="NUM")’

Non-ambiguous grammar:
if-then-else statement

It is possible to write a non-ambiguous grammar for
the if-else statements, as follows:

M| U

fCS

'if C M'else' U

'if' C M'else' M

ID'="NUM";'|ID'="ID";

:="("ID '=="NUM ")’

O CCo;m

if (i==1) if (j==2) a=0; else a=1;

Non-ambiguous grammar :
Algebraic expressions

The non-ambiguous grammar that describes algebraic
expressions Iis:

S ==k
'+' T

v T

T %V F
l/l F

H g9 49 @
||
- 1 9 19 49 &= =

Foue=T"("E ")
F = NUM

The symbols T and F are used to solve the ambiguity glven by
the priority of operators ™' and '/' over the operators '+' e '-'. ¢ %

Ambiguous grammars in Cup:
shift-reduce conflict (I)

IF E THENS Input: IF E THEN IF E THEN S (*) ELSE S
IF E THEN S ELSE S EREDAR 6 CIREN = RS =
2 possible actions:

SHIFT 'ELSE' token into REDUCE the first 4 top
the Stack elements of the Stack
=> Rule 2 => Rule 1

S
~

S

/T

Ambiguous grammars in Cup:
shift-reduce conflict (1I)

IF E THENS
IF E THENS ELSE S *** Shift/Reduce conflict found in state #8
Vv between S ::=|[F E THEN S (%)
and S ::=IFETHEN S (*) ELSE S
Input under symbol ELSE
IF E THEN IF E THEN

V ELSE V Resolved in favor of shifting.

S
~
S
\ \ Cup performs
S S a shift
| | action.

IFETHEN IFETHENVELSE V

Ambiguous grammars in Cup:
reduce-reduce conflict (I)

m The next token is EOF
2 possible actions:

REDUCE the first 2 top REDUCE the first top
elements of the Stack element of the Stack

=> Rule 3 => Rule 4

Ambiguous grammars in Cup:
reduce-reduce conflict (II)

*** Reduce/Reduce conflict found in state #7
between B ::= b (*)
and B ::=a b ()
under symbols: {EOF}

Resolved in favor of the second production.

Cup performs a
reduction using the
first defined rule (3) .

Lists (I)

Examples of lists:
List with at least one element E, List of elements, possibly empty
separated with commas C: (first example):
List ::= List E | E ; //without C ListE ::= €| List ;
List ::=List CE | E; List ::= List E| E;

Parse tree Parse tree
List of 3 E (without C) Empty list | Listof3E
List ListE

: |
/ ListE /List

List | Li
/ £) ist

List]
| LIISt ‘

E E E

Same sequence of input

1.1 11 tokens, 2 different parse
StS () trees => AMBIGUOUS

GRAMMAR

Examples of lists:

List of elements, possibly empty List of elements, possibly empty
(second example): (WRONG example):

List ::=List E| €; List::=List E | E | €;

Parse tree Parse tree
Empty list Listof 3 E Empty list | List of 3 E (I
List i

= / =
List List ListE
| / |
€ List €

/

Lllst ‘
€ E E E

Lists (I111)

Examples of lists:
List of at least 3 elements: List of at least 3 elements in an

odd number:
List ;= List E| EEE; List ::= List EE | E E E;

Parse tree Parse tree
Listof4 E Listof 5 E

List List
- /

/\

E E E

S I B e I N = I I £ R 0

.= INTEGER

. Ambiguous grammars

Ambiguous grammars can result in fewer, simpler rules, and
hence can be sometimes preferred.

It is necessary to provide disambiguating rules in those cases.
A typical example is given by algebraic expressions:

= g

= F "+' T E = B '+' E
= J5 '="Y T F = F '"-'" E
= T E = F '*' F[
=T '"*'F '

=T '/' F Eux=E "'/'E
o E:::l(lEV)V
= '(" E ") E ::= INTEGER

Associativity

Left-associative operator (E ::=E '+ E)
" 1+2+3+4 — 3+3+4 - 6+4 —» 10

Right-associative operator (E ::=E'+'E)
®1+2+3+4 > 1+2+7 - 149 - 10

The assignment operator '=' is right-associative:
ma=Db=3
®m The power operator is also right-associative
m 37272 — 3"4 — 81

: Operators

HWE:=E'+'E

Rule #1 (as well as Rule #2) is ambiguous NE:=E™E

of the '+' (") operator is not specified 3) - =y

Moreover, the of the '+' and ™' Is not) (E)
4) E ;= INT

specified by Rules #1 and #2

It is possible to make these rules non-ambiguous by
adding information in the precedence section.

The keyword defines a left-associative
operator, a right-associative operator,
whereas defines a non-

associative operators.

: Disambiguating rules

To each production that contains at least one terminal
defined as operator, Cup associates the precedence and
associativity of the rightmost operator.

If the rule is followed by the keyword , the
precedence and associativity are those of the specified
operator.

In the case of a shift-reduce conflict, the action
corresponding to the highest precedence production is
executed.

If the precedence is the same, associativity is used: left-
associativity results in a reduce action, right-associativity in
a shift action.

. Example

terminal uminus;

precedence left PLUS, MINUS; /* Low priority */
precedence left STAR, DIV,
precedence left uminus; /* High priority */

start with E;

v(v E 1)1
INTEGER

E = E PLUS E
| E MINUS E
| E STAR E
| E DIV E
| MINUS E sprec uminus
I
I

User code

Directives are available to insert user code directly in the parser.
They are useful for

®m Personalizing the parser behavior

®m Adding code directly in the class that implements the parser

®m Using a scanner generator different from the default one (JFlex)

They are:
®initwith {: ... :}
A This code is executed before calling any scanner method, hence
before any terminal symbol is passed to the parser

A 1t is used to inizialize variables or to initialize the scanner in the case
JFlex is not used.

User code (II)

w scanwith{: ... i}
A Indicates to the parser which procedure to use to request the next
terminal to the scanner
A It must return an object of the class java_cup.runtime.Symbol

A |t is used for non-default scanner generators (different than JFlex)

A scan with {: return scanner.next_token(); :}
® When CUP generates the java file that implements the parser, two classes
are defined:
4 public class extends java_cup.runtime.lr_parser

A Is the java class that implements the parser and inherits
different methods from the java_cup.runtime.lr_parser class

4 class
A is the class where declared grammar rules are
translated into a java program. Here, also semantic actions (i.e., the
java code related to each rule) are reported S

User code (I111)

®m The class is implemented in the file
java_cup/runtime/Ir_parser.java, in the CUP installation directory

m parsercode{: ... i}
4~ The code is included in the class

A It is used to include scanning methods within the parser but usually to
override parser methods (e.g. to override methods for error handling)

® actioncode {: ... i}

4 The code included in this directive is copied as is in the
class

4 The code is reachable only in the semantic actions associated with
grammar rules

A |t is used to define procedures and variables to be used in the actions
associated to the grammar (e.g., symbol table)

Errors:

scameriex
Printing line and column

import java_cup.runtime.”;

Symbol constructors:

%% public Symbol(int sym_id)

YoCUp public Symbol(int sym_id, int left, int right)

%line public Symbol(int sym_id, Object 0)

oscolumn public Symbol(int sym_id, int left, int right, Object o)

Yo
private Symbol my_symbol(int type){
return new Symbol(type, yyline, yycolumn);
}

private Symbol my_symbol(int type, Object value){
return new Symbol(type, yyline, yycolumn,value);
}

Y%}
%%
[a-Z] { return my_symbol(sym.EL); }

: { return my_symbol(sym.CM); }

Lab 3

//Semantic analysis

KErrors:
Printing line and column

parser.cup

import java_cup.runtime.”;

parser code {:
public void) {
StringBuffer m = new StringBuffer(message);
if (info instanceof Symbol) {
if (((Symbol)info).left |= -1 && ((Symbol)info).right = -1) {

int line = ()+1;
Int column = ()+1;
m.append(” (line "+line+", column "+column+")");

}
}

System.err.printin(m);

‘error' predefined symbol

The 'error’ predefined symbol signals an error condition. It can

be used within the grammar in order to enable the parser to
continue execution when an error is encountered.

Example:

ass ::= ID EQ E S
| ID EQ error S

How does Cup handle
the 'error' symbol?

When an error occurs, the parser will start emptying the stack
until a state is found in which the 'error' symbol is allowed

In the previous example, uncorrect E (i.e. symbol sequences that cannot
be reduced as E) are removed from the stack, until the terminal EQ is
found on the top of the stack.

The error token is shifted in the stack

If the next token is acceptable, the parser resumes syntax
analysis.

Otherwise the parser will continue to read and discard tokens,
until an acceptable one is found

In the prevoius example, the parser will read and discard all tokens until S
is found.

Some general rules

A simple strategy for error handling is skipping the current
Statement:
stmt ::= error ';'

Sometimes it can be useful to find a closing symbol
corresponding to an opening symbol:

expr = '"(' expr ')'
| '(' error ')'

Note: to limit the generation of spurious error messages, after an
error occurs, error signaling is suspended until at least three
consecutive tokens are shifted.

Grammar

stmts ::= /* empty */
: | stmts stmt
file = funcs .
. 4
stmt = exp ';'
funcs ::= /* empty */ ol
| compound
| funcs func .
; 4
ex ::= NUM
func ::=ID '(' '")' P
| exp '+' exp
compound
: | exp '-' exp
’ | exp '*' exp
exp '/' ex
compound = '{' stmts '}’ | p '/ P
| '-' exp %prec NEG
; LY A | T\ 1V 3
| ' (' exp ')
;

Statements and expressions

stmt ::=exp "}
| compound
| error';' {: System.err.printin("Syntax error in statement"); :}

compound ::='{' stmts '}’
| '{' stmts error '}’ {: System.err.printin("Missing ; before '}' "); :}

exp = ...
| '(" error)" {: System.err.printin("Syntax error in expression"); :}

)

OTHER SLIDES

Handling syntax error (I)

Generally speaking, when a parser finds an error it should
not immediately terminate the execution

®m A compiler usually tries to recover from the error in order to analyze
the rest of the input and signal the highest possible number of errors

As default, a CUP-generated parser when an error is
detected:

m Signals by means of the method
defined in the class a syntax
error, writing "Syntax error" in stderr.

m |f the error is not managed by the parser through the predefined
symbol, the parser call the
method, also defined
in . This function, after writing "Couldn:{,
repair and continue parse" in stderr (to notify the user of an £x=2&:

unrecoverable syntax error), stops the execution of the parser::#%”
Lab 3

Handling syntax error (II)

Analyzing the two functions in detail:

Calls the function with the following parameters
report_error("Syntax error", cur_token);
Where, when an error occurs, cur_token is the currently looahead symbol

Calls the function , with the following parameters
report_fatal error("Couldn't repair and continue parse", cur_token);

The report_fatal _error function calls with the same parameters
and it launches an exception that causes the end of

the parser

A suitable redefinition, in parser code {: ... i}, of the Ilsted
functions, allow to customize errors management

