
1Lab 3

POLITECNICO DI TORINO

(01JEUHT) Formal Languages and Compilers

Laboratory N°3

Stefano Scanzio
Mail: stefano.scanzio@polito.it

Web: http://www.skenz.it/compilers

2Lab 3

Cup Advanced Use

Grammars with ambiguities

Lists

Operator precedence

Handling syntax errors

3Lab 3

Ambiguous grammars in CUP

 Conflicts can arise when the grammar is ambiguous

 This implies that the parser must choose between two or more
alternative actions.

 The problem can be solved by modifying the grammar (in order
to make it non-ambiguous) or by instructing the parser on how
to handle ambiguity.

 The latter option requires that the parsing algorithm is fully
understood, in order to avoid unwanted / wrong behaviours.

4Lab 3

Ambiguous Grammar

 A grammar is ambiguous if there is at least one sequence of
symbols for which two or more distinct parse trees exist.

 Exercise: find all parse trees for

if (i==1) if (j==2) a=0; else a=1;

given the grammar:

 S ::= M

 M ::= 'if' C M

 M ::= 'if' C M 'else' M

 M ::= ID '=' NUM ';' | ID '=' ID ';'

 C ::= '(' VAR '==' NUM ')'

5Lab 3

Non-ambiguous grammar:

if-then-else statement

 It is possible to write a non-ambiguous grammar for
the if-else statements, as follows:
 S ::= M | U
 U ::= 'if' C S
 U ::= 'if' C M 'else' U
 M ::= 'if' C M 'else' M
 M ::= ID '=' NUM ';' | ID '=' ID ';'
 C ::= '(' ID '==' NUM ')'

 if (i==1) if (j==2) a=0; else a=1;

6Lab 3

 The non-ambiguous grammar that describes algebraic
expressions is:

S ::= E

E ::= E '+' T

E ::= E '-' T

E ::= T

T ::= T '*' F

T ::= T '/' F

T ::= F

F ::= '(' E ')'

F ::= NUM

 The symbols T and F are used to solve the ambiguity given by
the priority of operators '*' and '/' over the operators '+' e '-' .

Non-ambiguous grammar :

Algebraic expressions

7Lab 3

Ambiguous grammars in Cup:
shift-reduce conflict (I)

 Input: IF E THEN IF E THEN S (*) ELSE S

 The next token is 'ELSE'

 2 possible actions:

1) S ::= IF E THEN S

2) S ::= IF E THEN S ELSE S

3) S ::= V

Top of
Stack

IF

E

IF

E

THEN

THEN

S

 REDUCE the first 4 top
elements of the Stack

=> Rule 1

 SHIFT 'ELSE' token into
the Stack

=> Rule 2

IFIF

S

EIF

S

E THEN THEN ELSEV

S

V

S

S

IF EIF

S

E THEN THEN ELSEV V

SS

IF

8Lab 3

Ambiguous grammars in Cup:
shift-reduce conflict (II)

1) S ::= IF E THEN S

2) S ::= IF E THEN S ELSE S

3) S ::= V

Cup performs
a shift

action.

Input

IF E THEN IF E THEN

V ELSE V

*** Shift/Reduce conflict found in state #8

between S ::= IF E THEN S (*)

and S ::= IF E THEN S (*) ELSE S

under symbol ELSE

Resolved in favor of shifting.

IFIF

S

EIF

S

E THEN THEN ELSEV

S

V

S

IF

9Lab 3

Ambiguous grammars in Cup:
reduce-reduce conflict (I)

 The next token is EOF

 2 possible actions:

1) S ::= a B

2) S ::= B

3) B ::= a b

4) B ::= b

a

b

Top of
Stack

Input

a b

 REDUCE the first 2 top
elements of the Stack

=> Rule 3

 REDUCE the first top
element of the Stack

=> Rule 4

S

a

B

b

S

a

B

b

10Lab 3

Ambiguous grammars in Cup:
reduce-reduce conflict (II)

1) S ::= a B

2) S ::= B

3) B ::= a b

4) B ::= b

a

b

Top of
Stack

Cup performs a
reduction using the

first defined rule (3) .

*** Reduce/Reduce conflict found in state #7

between B ::= b (*)

and B ::= a b (*)

under symbols: {EOF}

Resolved in favor of the second production.

11Lab 3

 List of elements, possibly empty
(first example):

Lists (I)

 Examples of lists:
 List with at least one element E,

separated with commas C:

List ::= List E | E ; //without C

List ::= List C E | E ;

List

List

Parse tree

List of 3 E (without C)

E EE

List

ListE ::= εεεε | List ;

List ::= List E | E ;

List

List

Parse tree

E EE

List

List of 3 EEmpty list
ListE

ListE

εεεε

12Lab 3

 List of elements, possibly empty
(WRONG example):

Lists (II)

 Examples of lists:
 List of elements, possibly empty

(second example):

List ::= List E | εεεε ; List ::= List E | E | εεεε ;

Parse tree

List of 3 E (I)Empty list

ListE

εεεε

List

List

Parse tree

εεεε EE

List

List of 3 EEmpty list

List

εεεε List

E

List of 3 E (II)

List

List

εεεε EE

List

List

E

List

List

E EE

List

Same sequence of input

tokens, 2 different parse
trees => AMBIGUOUS

GRAMMAR

13Lab 3

 List of at least 3 elements in an
odd number:

Lists (III)

 Examples of lists:
 List of at least 3 elements:

List ::= List E | E E E ; List ::= List E E | E E E;

Parse tree
List of 5 E

List

Parse tree

List of 4 E

E EE

List

E

List

E EE

List

EE

14Lab 3

Precedence Section: Ambiguous grammars

 Ambiguous grammars can result in fewer, simpler rules, and
hence can be sometimes preferred.

 It is necessary to provide disambiguating rules in those cases.

 A typical example is given by algebraic expressions:

Non-ambiguous grammar

S ::= E

E ::= E '+' T

E ::= E '-' T

E ::= T

T ::= T '*' F

T ::= T '/' F

T ::= F

F ::= '(' E ')'

F ::= INTEGER

Ambiguous grammar

E ::= E '+' E

E ::= E '-' E

E ::= E '*' E

E ::= E '/' E

E ::= '(' E ')'

E ::= INTEGER

15Lab 3

Associativity

 Left-associative operator (E ::= E '+' E)
 1+2+3+4 → 3+3+4 → 6+4 → 10

 Right-associative operator (E ::= E '+' E)
 1+2+3+4 → 1+2+7 → 1+9 → 10

 The assignment operator '=' is right-associative:
 a = b = 3

 The power operator is also right-associative

 3^2^2 → 3^4 → 81

16Lab 3

Precedence Section: Operators

 Rule #1 (as well as Rule #2) is ambiguous

 Associativity of the '+' ('*') operator is not specified

 Moreover, the precedence of the '+' and '*' is not
specified by Rules #1 and #2

 It is possible to make these rules non-ambiguous by
adding information in the precedence section.

 The keyword precedence left defines a left-associative
operator, precedence right a right-associative operator,
whereas precedence nonassoc defines a non-
associative operators.

 The order in which precedence keywords are declared
is inversely proportional to their priority.

1) E ::= E '+' E

2) E ::= E '*' E

3) E ::= '(' E ')'

4) E ::= INT

17Lab 3

Precedence Section: Disambiguating rules

 To each production that contains at least one terminal
defined as operator, Cup associates the precedence and
associativity of the rightmost operator.

 If the rule is followed by the keyword %prec, the
precedence and associativity are those of the specified
operator.

 In the case of a shift-reduce conflict, the action
corresponding to the highest precedence production is
executed.

 If the precedence is the same, associativity is used: left-
associativity results in a reduce action, right-associativity in
a shift action.

18Lab 3

Precedence Section: Example

terminal uminus;

precedence left PLUS, MINUS; /* Low priority */

precedence left STAR, DIV;

precedence left uminus; /* High priority */

start with E;

E ::= E PLUS E

| E MINUS E

| E STAR E

| E DIV E

| MINUS E %prec uminus

| '(' E ')'

| INTEGER

;

19Lab 3

User code

 Directives are available to insert user code directly in the parser.

 They are useful for
 Personalizing the parser behavior

 Adding code directly in the class that implements the parser

 Using a scanner generator different from the default one (JFlex)

 They are:
 init with {: … :}

� This code is executed before calling any scanner method, hence
before any terminal symbol is passed to the parser

� It is used to inizialize variables or to initialize the scanner in the case
JFlex is not used.

20Lab 3

User code (II)

 scan with {: … :}

� Indicates to the parser which procedure to use to request the next
terminal to the scanner

� It must return an object of the class java_cup.runtime.Symbol

� It is used for non-default scanner generators (different than JFlex)

� scan with {: return scanner.next_token(); :}

 When CUP generates the java file that implements the parser, two classes
are defined:

� public class parser extends java_cup.runtime.lr_parser

� parser is the java class that implements the parser and inherits
different methods from the java_cup.runtime.lr_parser class

� class CUP$parser$actions

� CUP$parser$actions is the class where declared grammar rules are
translated into a java program. Here, also semantic actions (i.e., the
java code related to each rule) are reported

21Lab 3

User code (III)

 The java_cup.runtime.lr_parser class is implemented in the file
java_cup/runtime/lr_parser.java, in the CUP installation directory

 parser code {: … :}

� The code is included in the parser class

� It is used to include scanning methods within the parser but usually to
override parser methods (e.g. to override methods for error handling)

 action code {: … :}

� The code included in this directive is copied as is in the
CUP$parser$actions class

� The code is reachable only in the semantic actions associated with
grammar rules

� It is used to define procedures and variables to be used in the actions
associated to the grammar (e.g., symbol table)

22Lab 3

Errors:
Printing line and column

import java_cup.runtime.*;
…
%%
%cup
%line
%column

%{
private Symbol my_symbol(int type){

return new Symbol(type, yyline, yycolumn);
}
private Symbol my_symbol(int type, Object value){ //Semantic analysis

return new Symbol(type, yyline, yycolumn,value);
}

%}
…
%%
[a-z] { return my_symbol(sym.EL); }
‘,’ { return my_symbol(sym.CM); }

scanner.flex

Symbol constructors:
public Symbol(int sym_id)
public Symbol(int sym_id, int left, int right)
public Symbol(int sym_id, Object o)
public Symbol(int sym_id, int left, int right, Object o)

23Lab 3

Errors:
Printing line and column

import java_cup.runtime.*;

parser code {:

public void report_error(String message, Object info) {

StringBuffer m = new StringBuffer(message);

if (info instanceof Symbol) {

if (((Symbol)info).left != -1 && ((Symbol)info).right != -1) {

int line = (((Symbol)info).left)+1;

int column = (((Symbol)info).right)+1;

m.append(" (line "+line+", column "+column+")");

}

}

System.err.println(m);

}

:}

parser.cup

24Lab 3

'error' predefined symbol

 The 'error' predefined symbol signals an error condition. It can
be used within the grammar in order to enable the parser to
continue execution when an error is encountered.

 Example:

ass ::= ID EQ E S

| ID EQ error S

;

25Lab 3

How does Cup handle
the 'error' symbol?

 When an error occurs, the parser will start emptying the stack
until a state is found in which the 'error' symbol is allowed
 In the previous example, uncorrect E (i.e. symbol sequences that cannot

be reduced as E) are removed from the stack, until the terminal EQ is
found on the top of the stack.

 The error token is shifted in the stack

 If the next token is acceptable, the parser resumes syntax
analysis.

 Otherwise the parser will continue to read and discard tokens,
until an acceptable one is found
 In the prevoius example, the parser will read and discard all tokens until S

is found.

26Lab 3

Some general rules

 A simple strategy for error handling is skipping the current
statement:

stmt ::= error ';'

 Sometimes it can be useful to find a closing symbol
corresponding to an opening symbol:

expr ::= '(' expr ')'
| '(' error ')'

 Note: to limit the generation of spurious error messages, after an
error occurs, error signaling is suspended until at least three
consecutive tokens are shifted.

27Lab 3

Grammar

file ::= funcs

;

funcs ::= /* empty */

| funcs func

;

func ::= ID '(' ')'

compound

;

compound ::= '{' stmts '}'

;

stmts ::= /* empty */

| stmts stmt

;

stmt ::= exp ';'

| compound

;

exp ::= NUM

| exp '+' exp

| exp '-' exp

| exp '*' exp

| exp '/' exp

| '-' exp %prec NEG

| '(' exp ')'

;

28Lab 3

Statements and expressions

stmt ::= exp ';'

| compound

| error ';' {: System.err.println("Syntax error in statement"); :}

;

compound ::= '{' stmts '}'

| '{' stmts error '}' {: System.err.println("Missing ; before '}' "); :}

;

exp ::= …
| '(' error ')' {: System.err.println("Syntax error in expression"); :}

;

29Lab 3

OTHER SLIDES

30Lab 3

Handling syntax error (I)

Generally speaking, when a parser finds an error it should
not immediately terminate the execution
 A compiler usually tries to recover from the error in order to analyze

the rest of the input and signal the highest possible number of errors

As default, a CUP-generated parser when an error is
detected:
 Signals by means of the method public void syntax_error(Symbol

cur_token) defined in the java_cup.runtime.lr_parser class a syntax
error, writing "Syntax error" in stderr.

 If the error is not managed by the parser through the predefined
error symbol, the parser call the public void
unrecovered_syntax_error(Symbol cur_token) method, also defined
in java_cup.runtime.lr_parser. This function, after writing "Couldn't
repair and continue parse" in stderr (to notify the user of an
unrecoverable syntax error), stops the execution of the parser.

31Lab 3

Handling syntax error (II)

Analyzing the two functions in detail:

public void syntax_error(Symbol cur_token)
 Calls the function report_error with the following parameters

report_error("Syntax error", cur_token);
� Where, when an error occurs, cur_token is the currently looahead symbol

public void unrecovered_syntax_error(Symbol cur_token)
 Calls the function report_fatal_error, with the following parameters

report_fatal_error("Couldn't repair and continue parse", cur_token);

 The report_fatal_error function calls with the same parameters
report_error and it launches an exception that causes the end of
the parser

A suitable redefinition, in parser code {: … :}, of the listed
functions, allow to customize errors management

