
Formal Languages and Compilers stefano.scanzio@polito.it

http://www.skenz.it/compilers Laboratory n° 3

1Lab 3

POLITECNICO DI TORINO

(01JEUHT) Formal Languages and Compilers

Laboratory N°3

Stefano Scanzio
Mail: stefano.scanzio@polito.it

Web: http://www.skenz.it/compilers

2Lab 3

Cup Advanced Use

Grammars with ambiguities

Lists

Operator precedence

Handling syntax errors

Formal Languages and Compilers stefano.scanzio@polito.it

http://www.skenz.it/compilers Laboratory n° 3

3Lab 3

Ambiguous grammars in CUP

 Conflicts can arise when the grammar is ambiguous

 This implies that the parser must choose between two or more
alternative actions.

 The problem can be solved by modifying the grammar (in order
to make it non-ambiguous) or by instructing the parser on how
to handle ambiguity.

 The latter option requires that the parsing algorithm is fully
understood, in order to avoid unwanted / wrong behaviours.

4Lab 3

Ambiguous Grammar

 A grammar is ambiguous if there is at least one sequence of
symbols for which two or more distinct parse trees exist.

 Exercise: find all parse trees for

if (i==1) if (j==2) a=0; else a=1;

given the grammar:

 S ::= M

 M ::= 'if' C M

 M ::= 'if' C M 'else' M

 M ::= ID '=' NUM ';' | ID '=' ID ';'

 C ::= '(' VAR '==' NUM ')'

Formal Languages and Compilers stefano.scanzio@polito.it

http://www.skenz.it/compilers Laboratory n° 3

5Lab 3

Non-ambiguous grammar:

if-then-else statement

 It is possible to write a non-ambiguous grammar for
the if-else statements, as follows:
 S ::= M | U
 U ::= 'if' C S
 U ::= 'if' C M 'else' U
 M ::= 'if' C M 'else' M
 M ::= ID '=' NUM ';' | ID '=' ID ';'
 C ::= '(' ID '==' NUM ')'

 if (i==1) if (j==2) a=0; else a=1;

6Lab 3

 The non-ambiguous grammar that describes algebraic
expressions is:

S ::= E

E ::= E '+' T

E ::= E '-' T

E ::= T

T ::= T '*' F

T ::= T '/' F

T ::= F

F ::= '(' E ')'

F ::= NUM

 The symbols T and F are used to solve the ambiguity given by
the priority of operators '*' and '/' over the operators '+' e '-' .

Non-ambiguous grammar :

Algebraic expressions

Formal Languages and Compilers stefano.scanzio@polito.it

http://www.skenz.it/compilers Laboratory n° 3

7Lab 3

Ambiguous grammars in Cup:
shift-reduce conflict (I)

 Input: IF E THEN IF E THEN S (*) ELSE S

 The next token is 'ELSE'

 2 possible actions:

1) S ::= IF E THEN S

2) S ::= IF E THEN S ELSE S

3) S ::= V

Top of
Stack

IF

E

IF

E

THEN

THEN

S

 REDUCE the first 4 top

elements of the Stack

=> Rule 1

 SHIFT 'ELSE' token into

the Stack

=> Rule 2

IFIF

S

EIF

S

E THEN THEN ELSEV

S

V

S

S

IF EIF

S

E THEN THEN ELSEV V

SS

IF

8Lab 3

Ambiguous grammars in Cup:
shift-reduce conflict (II)

1) S ::= IF E THEN S

2) S ::= IF E THEN S ELSE S

3) S ::= V

Cup performs
a shift

action.

Input

IF E THEN IF E THEN

V ELSE V

*** Shift/Reduce conflict found in state #8

between S ::= IF E THEN S (*)

and S ::= IF E THEN S (*) ELSE S

under symbol ELSE

Resolved in favor of shifting.

IFIF

S

EIF

S

E THEN THEN ELSEV

S

V

S

IF

Formal Languages and Compilers stefano.scanzio@polito.it

http://www.skenz.it/compilers Laboratory n° 3

9Lab 3

Ambiguous grammars in Cup:
reduce-reduce conflict (I)

 The next token is EOF

 2 possible actions:

1) S ::= a B

2) S ::= B

3) B ::= a b

4) B ::= b

a

b

Top of
Stack

Input

a b

 REDUCE the first 2 top

elements of the Stack

=> Rule 3

 REDUCE the first top

element of the Stack

=> Rule 4

S

a

B

b

S

a

B

b

10Lab 3

Ambiguous grammars in Cup:
reduce-reduce conflict (II)

1) S ::= a B

2) S ::= B

3) B ::= a b

4) B ::= b

a

b

Top of
Stack

Cup performs a
reduction using the

first defined rule (3) .

*** Reduce/Reduce conflict found in state #7

between B ::= b (*)

and B ::= a b (*)

under symbols: {EOF}

Resolved in favor of the second production.

Formal Languages and Compilers stefano.scanzio@polito.it

http://www.skenz.it/compilers Laboratory n° 3

11Lab 3

 List of elements, possibly empty
(first example):

Lists (I)

 Examples of lists:
 List with at least one element E,

separated with commas C:

List ::= List E | E ; //without C

List ::= List C E | E ;

List

List

Parse tree
List of 3 E (without C)

E EE

List

ListE ::= εεεε | List ;

List ::= List E | E ;

List

List

Parse tree

E EE

List

List of 3 EEmpty list
ListE

ListE

εεεε

12Lab 3

 List of elements, possibly empty
(WRONG example):

Lists (II)

 Examples of lists:
 List of elements, possibly empty

(second example):

List ::= List E | εεεε ; List ::= List E | E | εεεε ;

Parse tree

List of 3 E (I)Empty list

ListE

εεεε

List

List

Parse tree

εεεε EE

List

List of 3 EEmpty list

List

εεεε List

E

List of 3 E (II)

List

List

εεεε EE

List

List

E

List

List

E EE

List

Same sequence of input
tokens, 2 different parse

trees => AMBIGUOUS
GRAMMAR

Formal Languages and Compilers stefano.scanzio@polito.it

http://www.skenz.it/compilers Laboratory n° 3

13Lab 3

 List of at least 3 elements in an
odd number:

Lists (III)

 Examples of lists:
 List of at least 3 elements:

List ::= List E | E E E ; List ::= List E E | E E E;

Parse tree
List of 5 E

List

Parse tree
List of 4 E

E EE

List

E

List

E EE

List

EE

14Lab 3

Precedence Section: Ambiguous grammars

 Ambiguous grammars can result in fewer, simpler rules, and
hence can be sometimes preferred.

 It is necessary to provide disambiguating rules in those cases.

 A typical example is given by algebraic expressions:

Non-ambiguous grammar

S ::= E

E ::= E '+' T

E ::= E '-' T

E ::= T

T ::= T '*' F

T ::= T '/' F

T ::= F

F ::= '(' E ')'

F ::= INTEGER

Ambiguous grammar

E ::= E '+' E

E ::= E '-' E

E ::= E '*' E

E ::= E '/' E

E ::= '(' E ')'

E ::= INTEGER

Formal Languages and Compilers stefano.scanzio@polito.it

http://www.skenz.it/compilers Laboratory n° 3

15Lab 3

Associativity

 Left-associative operator (E ::= E '+' E)
 1+2+3+4 → 3+3+4 → 6+4 → 10

 Right-associative operator (E ::= E '+' E)
 1+2+3+4 → 1+2+7 → 1+9 → 10

 The assignment operator '=' is right-associative:
 a = b = 3

 The power operator is also right-associative

 3^2^2 → 3^4 → 81

16Lab 3

Precedence Section: Operators

 Rule #1 (as well as Rule #2) is ambiguous

 Associativity of the '+' ('*') operator is not specified

 Moreover, the precedence of the '+' and '*' is not
specified by Rules #1 and #2

 It is possible to make these rules non-ambiguous by
adding information in the precedence section.

 The keyword precedence left defines a left-associative
operator, precedence right a right-associative operator,
whereas precedence nonassoc defines a non-
associative operators.

 The order in which precedence keywords are declared
is inversely proportional to their priority.

1) E ::= E '+' E

2) E ::= E '*' E

3) E ::= '(' E ')'

4) E ::= INT

Formal Languages and Compilers stefano.scanzio@polito.it

http://www.skenz.it/compilers Laboratory n° 3

17Lab 3

Precedence Section: Disambiguating rules

 To each production that contains at least one terminal
defined as operator, Cup associates the precedence and
associativity of the rightmost operator.

 If the rule is followed by the keyword %prec, the
precedence and associativity are those of the specified
operator.

 In the case of a shift-reduce conflict, the action
corresponding to the highest precedence production is
executed.

 If the precedence is the same, associativity is used: left-
associativity results in a reduce action, right-associativity in
a shift action.

18Lab 3

Precedence Section: Example

terminal uminus;

precedence left PLUS, MINUS; /* Low priority */
precedence left STAR, DIV;
precedence left uminus; /* High priority */

start with E;

E ::= E PLUS E
| E MINUS E

| E STAR E
| E DIV E

| MINUS E %prec uminus
| '(' E ')'
| INTEGER

;

Formal Languages and Compilers stefano.scanzio@polito.it

http://www.skenz.it/compilers Laboratory n° 3

19Lab 3

User code

 Directives are available to insert user code directly in the parser.

 They are useful for
 Personalizing the parser behavior

 Adding code directly in the class that implements the parser

 Using a scanner generator different from the default one (JFlex)

 They are:
 init with {: … :}

� This code is executed before calling any scanner method, hence
before any terminal symbol is passed to the parser

� It is used to inizialize variables or to initialize the scanner in the case
JFlex is not used.

20Lab 3

User code (II)

 scan with {: … :}

� Indicates to the parser which procedure to use to request the next
terminal to the scanner

� It must return an object of the class java_cup.runtime.Symbol

� It is used for non-default scanner generators (different than JFlex)

� scan with {: return scanner.next_token(); :}

 When CUP generates the java file that implements the parser, two classes
are defined:

� public class parser extends java_cup.runtime.lr_parser

� parser is the java class that implements the parser and inherits
different methods from the java_cup.runtime.lr_parser class

� class CUP$parser$actions

� CUP$parser$actions is the class where declared grammar rules are
translated into a java program. Here, also semantic actions (i.e., the
java code related to each rule) are reported

Formal Languages and Compilers stefano.scanzio@polito.it

http://www.skenz.it/compilers Laboratory n° 3

21Lab 3

User code (III)

 The java_cup.runtime.lr_parser class is implemented in the file
java_cup/runtime/lr_parser.java, in the CUP installation directory

 parser code {: … :}

� The code is included in the parser class

� It is used to include scanning methods within the parser but usually to
override parser methods (e.g. to override methods for error handling)

 action code {: … :}

� The code included in this directive is copied as is in the
CUP$parser$actions class

� The code is reachable only in the semantic actions associated with
grammar rules

� It is used to define procedures and variables to be used in the actions
associated to the grammar (e.g., symbol table)

22Lab 3

Errors:
Printing line and column

import java_cup.runtime.*;
…
%%
%cup
%line
%column

%{
private Symbol my_symbol(int type){

return new Symbol(type, yyline, yycolumn);
}
private Symbol my_symbol(int type, Object value){ //Semantic analysis

return new Symbol(type, yyline, yycolumn,value);
}

%}
…
%%
[a-z] { return my_symbol(sym.EL); }
‘,’ { return my_symbol(sym.CM); }

scanner.flex

Symbol constructors:
public Symbol(int sym_id)
public Symbol(int sym_id, int left, int right)
public Symbol(int sym_id, Object o)
public Symbol(int sym_id, int left, int right, Object o)

Formal Languages and Compilers stefano.scanzio@polito.it

http://www.skenz.it/compilers Laboratory n° 3

23Lab 3

Errors:
Printing line and column

import java_cup.runtime.*;

parser code {:

public void report_error(String message, Object info) {

StringBuffer m = new StringBuffer(message);

if (info instanceof Symbol) {

if (((Symbol)info).left != -1 && ((Symbol)info).right != -1) {

int line = (((Symbol)info).left)+1;

int column = (((Symbol)info).right)+1;

m.append(" (line "+line+", column "+column+")");

}

}

System.err.println(m);

}

:}

parser.cup

24Lab 3

'error' predefined symbol

 The 'error' predefined symbol signals an error condition. It can
be used within the grammar in order to enable the parser to
continue execution when an error is encountered.

 Example:

ass ::= ID EQ E S
| ID EQ error S

;

Formal Languages and Compilers stefano.scanzio@polito.it

http://www.skenz.it/compilers Laboratory n° 3

25Lab 3

How does Cup handle
the 'error' symbol?

 When an error occurs, the parser will start emptying the stack
until a state is found in which the 'error' symbol is allowed
 In the previous example, uncorrect E (i.e. symbol sequences that cannot

be reduced as E) are removed from the stack, until the terminal EQ is
found on the top of the stack.

 The error token is shifted in the stack

 If the next token is acceptable, the parser resumes syntax
analysis.

 Otherwise the parser will continue to read and discard tokens,
until an acceptable one is found
 In the prevoius example, the parser will read and discard all tokens until S

is found.

26Lab 3

Some general rules

 A simple strategy for error handling is skipping the current
statement:

stmt ::= error ';'

 Sometimes it can be useful to find a closing symbol
corresponding to an opening symbol:

expr ::= '(' expr ')'

| '(' error ')'

 Note: to limit the generation of spurious error messages, after an
error occurs, error signaling is suspended until at least three
consecutive tokens are shifted.

Formal Languages and Compilers stefano.scanzio@polito.it

http://www.skenz.it/compilers Laboratory n° 3

27Lab 3

Grammar

file ::= funcs

;

funcs ::= /* empty */

| funcs func

;

func ::= ID '(' ')'

compound

;

compound ::= '{' stmts '}'

;

stmts ::= /* empty */

| stmts stmt

;

stmt ::= exp ';'

| compound

;

exp ::= NUM

| exp '+' exp

| exp '-' exp

| exp '*' exp

| exp '/' exp

| '-' exp %prec NEG

| '(' exp ')'

;

28Lab 3

Statements and expressions

stmt ::= exp ';'

| compound

| error ';' {: System.err.println("Syntax error in statement"); :}

;

compound ::= '{' stmts '}'

| '{' stmts error '}' {: System.err.println("Missing ; before '}' "); :}

;

exp ::= …
| '(' error ')' {: System.err.println("Syntax error in expression"); :}

;

Formal Languages and Compilers stefano.scanzio@polito.it

http://www.skenz.it/compilers Laboratory n° 3

29Lab 3

OTHER SLIDES

30Lab 3

Handling syntax error (I)

Generally speaking, when a parser finds an error it should
not immediately terminate the execution
 A compiler usually tries to recover from the error in order to analyze

the rest of the input and signal the highest possible number of errors

As default, a CUP-generated parser when an error is
detected:
 Signals by means of the method public void syntax_error(Symbol

cur_token) defined in the java_cup.runtime.lr_parser class a syntax
error, writing "Syntax error" in stderr.

 If the error is not managed by the parser through the predefined
error symbol, the parser call the public void
unrecovered_syntax_error(Symbol cur_token) method, also defined
in java_cup.runtime.lr_parser. This function, after writing "Couldn't
repair and continue parse" in stderr (to notify the user of an
unrecoverable syntax error), stops the execution of the parser.

Formal Languages and Compilers stefano.scanzio@polito.it

http://www.skenz.it/compilers Laboratory n° 3

31Lab 3

Handling syntax error (II)

Analyzing the two functions in detail:

public void syntax_error(Symbol cur_token)
 Calls the function report_error with the following parameters

report_error("Syntax error", cur_token);
� Where, when an error occurs, cur_token is the currently looahead symbol

public void unrecovered_syntax_error(Symbol cur_token)
 Calls the function report_fatal_error, with the following parameters

report_fatal_error("Couldn't repair and continue parse", cur_token);

 The report_fatal_error function calls with the same parameters
report_error and it launches an exception that causes the end of
the parser

A suitable redefinition, in parser code {: … :}, of the listed
functions, allow to customize errors management

