POLITECNICO DI TORINO

(01JEUHT) Formal Languages and Compilers
Laboratory N °4

Stefano Scanzio
mail: stefano.scanzio@polito.it
Web: hitps://www.skenz.it/compilers

Attributes of Symbols

A set of attributes can be associated to each symbol; attributes
can be:

: calculated from the values of the attributes of the
node’s children in the parse tree,

. calculated from the values of the parents / siblings in the
parse tree.
A set of semantic rules, specifying how attributes are
calculated, is associated to each production.

The scanner passes semantic values to the parser which, while
recognizing the grammar, updates the nodes of the parse tree

Synthesized attributes

A grammar whose attributes are all synthesized is denoted
as an S-attribute grammar.

In this case, it is possible to calculate the values of all
attributes using a bottom-up strategy, from the leaves to
the root of the parse tree.

E = E1 + T E.value

E,.value + T.value

E:=T E.value = T.value

T ::= number T.value number .value

Cup & Semantics: the Symbol class

In Cup, each symbol in the stack is an object of class Symbol (
cup/java_cup/runtime/Symbol.java)

It contains the following information:
A number uniquely identifying the symbol
public int sym;
The state in which the parse is
public int parse_state;

Two integers that are used to pass the line and column number from the
scanner to the parser

public int left, right;
An object of class Object to handle semantics
public Object value;

s Passing semantic values
to the parser

Symbol and semantic value:
[a-zA-Z][a-zA-Z0-9]* { return new Symbol(sym.ID,);

Symbol, line number, column number, and semantic value:

Yof
private Symbol my_symbol(int type, N
return new Symbol(type, yyline,yycolumn,);
} Symbol Constructors:

%) public Symbol(int sym_id)
public Symbol(int sym_id, int left, int right)
public Symbol(int sym_id, Object o)

/% public Symbol(int sym_id, int left, int right, Object o)

[a-zA-Z][a-zA-Z0-9_]* { return my_symbol(sym.ID,); }

Or equivalently:
[a-zA-Z][a-zA-Z0-9]* {
return new Symbol(sym.ID, yyline, yycolumn,); }

Cup & Semantic: specifying nodes types

Cup must know the type of the semantic value of each symbol

It uses the following definition of terminals and non-terminals:
terminal <Object> <list_of terminals> ;
non terminal <Object> <list_of not_terminals> ;

<Object> is the class of the object associated to a given symbol

Example:
terminal String ID;
An object of class String will be associated to ID.
terminal Integer NUM;

non terminal MyObject var; class MyObject {
public String var_name;

public String var_type;

Cup & Semantic: using semantic values

E::= EPLUST

Given a set of productions: | EMINUS T;

One can refer to the semantic value of each symbol by adding labels
to the symbols of interest:
A label is constituted by the "' character E ::= E:n1 PLUS T:n2

followed by a | E:n1 MINUS T:n2 ;

Within each production, the labels can be used normally as objects
of the class specified in the definition of terminals and non-terminals:

E:= E:n1PLUSTn2 {: System.out.printin1 +" +" +n2); 3}
| E:n1 MINUS T:n2 {: System.out.prinf{(n1 + " -" + n2); 3}

Cup & Semantic: Actions and RESULT

An action can be associated to each production, ({:/* Java
Code™/ :}) and is executed every time the corresponding
production is reduced

The action updates the semantic value of each symbol

For each production, the object, of class . IS
defined.

represents the result of the semanatic rules contained
in the action, and Is therefore associated to the
symbol in the left hand side of the production

Calculating synthesized attributes

Given the algebraic expressions grammar, the following rule
assigns to the symbol 'E' the sum or the subtraction of the
values of the addends/subtrahends:

non terminal Integer E, T;

E ::

= E:n1 PLUS T:n2
{: RESULT = n1 + n2; 3}

E:n1 MINUS T:n2
{: RESULT = n1 - n2; :}

OR: {: RESULT = new Integer(ni.intValue() + n2.intValue()); :}

Calculating synthesized attributes (2)

It is possible to propagate more than one semantic value through
RESULT, in the following way:

terminal RO, RC;

terminal String identifier;
terminal Integer Args;

non terminal Object[| Func;
non terminal goal;

goal ::= Func:a {:
System.out.printin("Function name: " + a[0] + "Number of parameters: " + a[1]);

1

Func ::= identifier:a RO Args:b RC {:
RESULT = new Obiject[2];
RESULT[0] = new String(a);
RESULT[1] = new Integer(b);

Calculating synthesized attributes (3)

Alternatively, one can write a class that contains all the required
iInformation:

action code {:
class MyFunc {
public String id;
public Integer args;
MyFunc(String id, Integer args) {
this.id = new String(id);
this.args = new Integer(args);

non terminal MyFunc Func;

goal ::= Func:a {:
System.out.printin("Function name : " + a.id + "Number of parameters: " + a.args);
3
Func ::= identifier:a RO Args:b RC {: RESULT = new MyFunc(a, b); :};
Lab 4

Parser debugging

A series of option are available in Cup to visualize the parser’s
internal structures:

: Prints the list of terminals, non-terminals and
productions

. Prints the state graph
: Prints the ACTION TABLE and the REDUCE TABLE
: Prints all information

The parser can be executed in debug mode (all the actions
performed to analyze the input sequence are printed)

Normal mode: Debug mode:
Yylex 1 = new Yylex(new FileReader(file)); Yylex 1 = new Yylex(new FileReader(file));
parser p = new parser(l); parser p = new parser(l); ST

Object result = p.parse(); Object result =

States

-dump_states

==== Viable Prefix Recognizer ====
START lalr_state [0]: {

[exp ::=(*) T, {EOF PLUS }]

[exp ::=(*) exp PLUS T, {EOF PLUS
1

[T ::=(*) NUMBER , {EOF PLUS }]

[$START ::= (*) exp EOF, {EOF }]
}
transition on exp to state [3]
transition on T to state [2]
transition on NUMBER to state [1]
lalr_state [1]: {

[T ::= NUMBER (*), {EOF PLUS }]
}

lalr_state [2]: {
[exp ::=T (*), {EOF PLUS }]

lalr_state [3]: {
[exp ::=exp (*) PLUS T, {EOF PLUS
1
[$START ::=exp (*) EOF, {EOF }]
}
transition on EOF to state [5]
transition on PLUS to state [4]

lalr_state [4]: {

[exp ::=exp PLUS (*) T, {EOF PLUS
1

[T ::= (*) NUMBER , {EOF PLUS }]
}
transition on T to state [6]
transition on NUMBER to state [1]
lalr_state [5]: {

[$START ::=exp EOF (*), {EOF }]

Action / Reduce Tables

-dump_tables

———————— ACTION_TABLE --------
From state #0
[term 2:SHIFT(to state 1)]
From state #1
[term O:REDUCE(with prod 3)] [term 3:REDUCE(with prod 3)]
From state #2
[term O:REDUCE(with prod 2)] [term 3:REDUCE(with prod 2)]
From state #3
[term O:SHIFT(to state 5)] [term 3:SHIFT(to state 4)]
From state #4
[term 2:SHIFT(to state 1)]
From state #5
[term O:REDUCE(with prod 0)]
From state #6
[term O:REDUCE(with prod 1)] [term 3:REDUCE(with prod 1)]

———————— REDUCE_TABLE --------
From state #0
[non term 1->state 3] [non term 2->state 2]
From state #1
From state #2
From state #3
From state #4
[non term 2->state 6]
From state #5
From state #6

Grammar

-dump_grammar exp — exp PLUS T
exp—->T

T - NUMBER

===== [erminals =====

[O]JEOF [1]error [2INUMBER [3]PLUS
===== Non terminals =====
[0]PSTART [1]exp [2]T

===== Productions =====

0] $START ::= exp EOF
1] exp ::=exp PLUS T
2lexp =T

3] T ::= NUMBER

Debugging

debug_ parse()

Initializing parser

FOUND: 3

Current Symbol is #2

Shift under term #2 to state #1

FOUND: +

Current token is #3

Reduce with prod #3 [NT=2, SZ=1]

Reduce rule: top state 0, lhs sym 2 -> state 2
Goto state #2

Reduce with prod #2 [NT=1, SZ=1]

Reduce rule: top state 0, lhs sym 1 -> state 3
Goto state #3

Shift under term #3 to state #4

FOUND: 5

Current token is #2

Shift under term #2 to state #1

Current token is #0

Reduce with prod #3 [NT=2, SZ=1]

Reduce rule: top state 4, lhs sym 2 -> state 6
Goto state #6

Found expression

Reduce with prod #1 [NT=1, SZ=3]

Reduce rule: top state 0, lhs sym 1 -> state 3
Goto state #3

Shift under term #0 to state #5

Current token is #0

Reduce with prod #0 [NT=0, SZ=2]

Reduce rule: top state 0, lhs sym 0 -> state -1
Goto state #-1

Exercise

Salad 2.10;

Wine 12.00;

Pasta 1.50;

Bread 0.40;

Y%

Stefano : 2 Pasta, 1 Wine;

Giulia : 1 Salad, 1 Bread, 1 Pasta;

/* OUTPUT:
Stefano: 15.0 EURO
Giulia: 4.0 EURO

*/

OTHER SLIDES

Initializing parser ACTION_TABLE
From state #0
[term 2:SHIFT(to state 1)]

Current Symbol is #2
Shift under term #2 to state #1
Current token is #3

ACTION_TABLE
Reduce with prod #3 [NT=2, SZ=1] From state #1

Reduce rule: top state 0, Ins sym 2 -> state 2 [term 0:REDUCE(with prod 3)]

Goto state #2 [term 3:REDUCE (with prod 3)]
g REDUCE_TABLE
From state #0
[non term 1->state 3] [non term 2->state 2]

NUM ||+ || NUM | eof

fr

reduce (T > NUM)

= (T)

ACTION_TABLE
Reduce with prod #2 [NT=1, SZ=1] From state #2

Reduce rule: top state 0, Ins sym 1 -> state 3 [term 0:REDUCE (with prod 2)]
Goto state #3 [term 3:REDUCE (with prod 2)]
g REDUCE_TABLE
From state #0
[non term 1->state 3] [non term 2->state 2]

NUM ||+ || NUM | { eof

fr

reduce (exp 2> T)

= (exp)

| ACTION_TABLE
Shift under term #3 to state #4 From state #3
Current token is #2 [term 0:SHIFT (to state 5)]
/ [term 3:SHIFT(to state 4)]

Shift under term #2 to state #1 ACTION_TABLE
#C t token is #0 From state #4
SRR B [term 2:SHIFT (to state 1)]

ACTION_TABLE
Reduce with prod #3 [NT=2, SZ=1] From state #1

Reduce rule: top state 4, Ins sym 2 -> state 6 [term 0:REDUCE(with prod 3)]
Goto state #6 [term 3:REDUCE(with prod 3)]
2 REDUCE_TABLE

From state #4
[non term 2->state 6]

NUM | + || NUM

reduce (T > NUM)

s =@
0

ACTION_TABLE

Reduce with prod #1 [NT=1, SZ=3] From state #6

Reduce rule: top state 0, Ins sym 1 -> state 3 [term 0:REDUCE(with prod 1)]

Goto state #3 [term 3:REDUCE(with prod 1)]
é REDUCE_TABLE
From state #0
[non term 1->state 3] [non term 2->state 2]

{ NUM | (eof

/4

reduce (exp elexp “+’ f)

= (exp)

