Formal Languages and Compilers stefano.scanzio@polito.it

POLITECNICO DI TORINO

Attributes of Symbols

® A set of attributes can be associated to each symbol; attributes
(01JEUHT) Formal Languages and Compilers can be:

Laboratory N°4 ISychQSIZQd: calculated from the values of the attributes of the
Laboratory N % node’s children in the parse tree,

mInherited: calculated from the values of the parents / siblings in the
parse tree.
@ A set of semantic rules, specifying how attributes are
Stefano Scanzio calculated, is associated to each production.

mail: stefano.scanzio@polito.it

: https: . i pi . . .
Web: hitps://www.skenz.Iticompllers ® The scanner passes semantic values to the parser which, while

recognizing the grammar, updates the nodes of the parse tree

Lab4 1 Lab4 3
Synthesized attributes Cup & Semantics: the Symbol class
® A grammar whose attributes are all synthesized is denoted ® In Cup, each symbol in the stack is an object of class Symbol (
as an S-attribute grammar. cup/java_cup/runtime/Symbol.java)
® In this case, it is possible to calculate the values of all ° . A .
attributes using a bottom-up strategy, from the leaves to It contains the following information:
the root of the parse tree. ® A number uniquely identifying the symbol

A public int sym;
m The state in which the parse is

Eo=E '+ T E.value = E;.value + T.value A public int parse_state;
E-=T E.value = T.value m Two integers that are used to pass the line and column number from the
scanner to the parser
T ::= number T.value = number.value 4 public int left, right;
m An object of class Object to handle semantics
A public Object value;
Lab4 4 Lab4 8
Passing semantic values . -
Cup & Semantic: specifying nodes types

to the parser

@ Symbol and semantic value: ® Cup must know the type of the semantic value of each symbol
[a-zA-Z][a-2A-Z0-9]" { return new Symbol(sym.ID, new String(yytext())); } @ |t uses the following definition of terminals and non-terminals:
m terminal <Object> <list_of_terminals> ;
m non terminal <Object> <list_of_not_terminals> ;

® <Obiject> is the class of the object associated to a given symbol

® Symbol, line number, column number, and semantic value:
%of
private Symbol my_symbol(int type, Object value){
return new Symbol(type, yyline,yycolumn,value);

} Symbol Constructors: ® Example:
o, public Symbol(int sym_id) : : .
7} public Symbol(int sym_id, int left, int right) = terminal String ID;
public Symbol(int sym_id, Object o) A An object of class String will be associated to ID.
%% public Symbol(int sym_id, int left, int right, Object o)

m terminal Integer NUM;

[a-zA-Z][a-zA-Z0-9_]* { return my_symbol(sym.ID, new String(yytext())); } m non terminal MyObject var; class MyObject {
® Or equivalently: public String var_name;
[a-zA-Z][a-zA-Z0-9_]* { A public String var_type;
return new Symbol(sym.ID, yyline, yycolumn, new String(yytext())); } - }
Lab4 9 Lab4 10

https://www.skenz.it/compilers Laboratory n° 4

Formal Languages and Compilers

stefano.scanzio@polito.it

Cup & Semantic: using semantic values

: e E:x= EPLUST
® Given a set of productions: [| EMINUS T;]

® One can refer to the semantic value of each symbol by adding labels
to the symbols of interest:
m A label is constituted by the ':' character

E:n1 PLUS T:n2
followed by a name

| E:n1 MINUS T:n2 ;

® Within each production, the labels can be used normally as objects
of the class specified in the definition of terminals and non-terminals:

E:= E:n1 PLUSTIN2 {: System.out.prinf(n1+" +" + n2); 3}
| E:n1 MINUS T:n2 {: System.out.print(n1+" -" + n2); :}

Cup & Semantic: Actions and RESULT

® An action can be associated to each production, ({: /* Java
Code™/ :}) and is executed every time the corresponding
production is reduced

@ The action updates the semantic value of each symbol

® For each production, the RESULT object, of class Object, is
defined.

® RESULT represents the result of the semanatic rules contained
in the action, and is therefore associated to the
symbol in the left hand side of the production

Lab 4 11

Lab 4 12

Calculating synthesized attributes

® Given the algebraic expressions grammar, the following rule
assigns to the symbol 'E' the sum or the subtraction of the
values of the addends/subtrahends:

non terminal Integer E, T;

E:= E:n1PLUS T:n2

{: RESULT = n1 + n2; 3}
| E:n1 MINUS T:n2

{: RESULT =n1 -n2; 3}

® OR: {: RESULT = new Integer(ni.intValue() + n2.intValue()); 3}

Calculating synthesized attributes (2)

® |t is possible to propagate more than one semantic value through
RESULT, in the following way:

@ninal RO, RC; \

terminal String identifier;
terminal Integer Args;

non terminal Object[] Func;
non terminal goal;

goal ::= Func:a {:
System.out.printin("Function name: " + a[0] + "Number of parameters: " + a[1]);

31

Func ::= identifier:a RO Args:b RC {:
RESULT = new Object[2];
RESULT[0] = new String(a);
RESULT[1] = new Integer(b);

. .

Lab 4 13

Lab 4 14

Calculating synthesized attributes (3)

® Alternatively, one can write a class that contains all the required
information:

action code {:
class MyFunc {
public String id;
public Integer args;
MyFunc(String id, Integer args) {
this.id = new String(id);
this.args = new Integer(args);

}
b

non terminal MyFunc Func;

goal ::= Func:a{:
System.out.printin("Function name : " + a.id + "Number of parameters: " + a.args);

BN

Eunc = identifier:a RO Args:b RC {: RESULT = new MyFunc(a,b); :};

Parser debugging

® A series of option are available in Cup to visualize the parser’s
internal structures:

m -dump_grammar : Prints the list of terminals, non-terminals and
productions

m -dump_states : Prints the state graph
m -dump_table : Prints the ACTION TABLE and the REDUCE TABLE
m -dump : Prints all information
® The parser can be executed in debug mode (all the actions
performed to analyze the input sequence are printed)

Normal mode: Debug mode:

Yylex 1=new Yylex(new FileReader(file)); Yylex 1 =new Yylex(new FileReader(file));
parser p = new parser(l); parser p = new parser(l);

Object result = p.parse(); Object result = p.debug_parse();

Lab 4 15

o Lab4 16

https://www.skenz.it/compilers

Laboratory n° 4

Formal Languages and Compilers

stefano.scanzio@polito.it

® -dump_states

Viable Prefix Recogniz
START llr_state [0]: {

", (EOF PLUS)]
*) exp PLUS T, {EOF PLUS

[T 3= () NUMBER,, (EOF PLUS }]

[$STAI !
}
transition on exp to state [3]
transition on T to state [2]

States

lalr_state [2]: {
T (*), {EOF PLUS }]

exp ::
)

lalr_state [3]: {
[exp = exp (*) PLUS T, {EOF PLUS
il

[$START ::= exp (*) EOF, {EOF }]
}

transition on EOF to state [5]

lalr_state [4]: {
[exp ::= exp PLUS (*) T, {EOF PLUS
]

[T = (*) NUMBER , {EOF PLUS }]
)
transition on T to state [6]
transition on NUMBER to state [1]

lalr_state [S]: {

lalr_state [6]: {
fexp = exp PLUS T (¥) , (EOF PLUS

Action / Reduce Tables

©® -dump_tables

[term 2:SHIFT(to state 1)]
From state #1

[term O:REDUCE(with prod 3)] [term 3:REDUCE(with prod 3)]
From state #2

[term O:REDUCE(with prod 2)] [term 3:REDUCE(with prod 2)]
From state #3

[term O:SHIFT(to state 5)] [term 3:SHIFT(to state 4)]

From state #4

[term 2:SHIFT(to state 1)]

From state #5

[term O:REDUCE(with prod 0)]

From state #6

[term O:REDUCE(with prod 1)] [term 3:REDUCE(with prod 1)]

-------- REDUCE_TABLE —-----
From state #0
[non term 1->state 3] [non term 2->state 2]
From state #1
From state #2
From state #3
From state #4
[non term 2->state 6]
From state #5
From state #6

transition on PLUS to state [4]

[T = NUMBER (¥),, {EOF PLUS }]

Lab 4 17 Lab 4 18

Grammar Debugging

exp - exp PLUS T ® debug_parse() Input string: 3+5
exp->T

T — NUMBER

©® -dump_grammar

Shift under term #2 to state #1

Current token is #0

Reduce with prod #3 [NT=2, SZ=1]

Reduce rule: top state 4, lhs sym 2 -> state 6
Goto state #6

Found expression

Reduce with prod #1 [NT=1, SZ=3]

Reduce rule: top state 0, lhs sym 1 -> state 3
Goto state #3

Initializing parser

FOUND: 3

Current Symbol is #2

Shift under term #2 to state #1

FOUND: +

Current token is #3

Reduce with prod #3 [NT=2, SZ=1]

Reduce rule: top state 0, lhs sym 2 -> state 2
Goto state #2

Reduce with prod #2 [NT=1, SZ=1]

Reduce rule: top state 0, Ihs sym 1 -> state 3
Goto state #3

Shift under term #3 to state #4

FOUND: 5

Current token is #2

== Terminals =
[O]EOF [1]error [2]NUMBER [8]PLUS
== Non terminals =

[O]$START [1]lexp [2]T

[O] $START ::=
[1] exp = exp PLUS T
[2]exp =T

[3] T ::= NUMBER

Shift under term #0 to state #5

Current token is #0

Reduce with prod #0 [NT=0, SZ=2]

Reduce rule: top state 0, lhs sym 0 -> state -1
Goto state #-1

Lab 4 19 Lab 4 20

Exercise

Salad 2.10;

Wine 12.00;

Pasta 1.50;

Bread 0.40;

%

Stefano : 2 Pasta, 1 Wine;

Giulia : 1 Salad, 1 Bread, 1 Pasta; OTH ER SLIDES
/* OUTPUT:
Stefano: 15.0 EURO
Giulia: 4.0 EURO

*/

Lab 4

https://www.skenz.it/compilers Laboratory n° 4

Formal Languages and Compilers stefano.scanzio@polito.it

]\ T T ACTION_TABLE -

z'(’:‘l'}'rfgﬁl”gy‘r’ﬁ‘ngi's P s ACTION_TABLE - # Reduce with prod #3 [NT=2, §Z=1] From state #1

Shift under term #2 to state #1 From state #0 # Reduce rule: top state 0, lhs sym 2 -> state 2 [term 0:REDUCE(with prod 3)]

Current token is #3 [term 2:SHIFT(to state 1)] # Goto state #2 [term 3:REDUCE(with prod 3)]
———————— REDUCE_TABLE --------

From state #0
[non term 1->state 3] [non term 2->state 2]

1 @@’

0

shift, go to state 1

| (o) o)

0 i} "
| o : @@

%@

reduce (T > NUM)

= (1)

Lab4 23 Lab 4 24
77777777 ACTION_TABLE ------—
Reduce with prod #2 [NT=1, SZ=1] From state #2 # Shift under term #3 to state #4 Erom ;?;ZI‘%NJABLE
Reduce rule: top state 0, Ihs sym 1 -> state 3 [term 0:REDUCE (with prod 2)] # Current token is #2 [term 0:SHIFT(to state 5)]
Goto state #3 [term 3:REDUCE(with prod 2)] [term S;SHIFT(to state 4)]
-------- REDUCE_TABLE -
From state #0
[non term 1->state 3] [non term 2->state 2]

)

3 @@

shift, go to state 4

reduce (exp>T)

= (exp)

5| [Num][+]num]
3
™ [Num [+ [num] - I
]
3
NUM 0 @ NUM
Lab 4 25 Lab 4 26
———————— ACTION_TABLE --------
T R ACTION_TABLE -------- # Reduce with prod #3 [NT=2, SZ=1] From state #1
Shift under term #2 to state #1 Erom state #4 .
Current token is #0 # Reduce rule: top state 4, lhs sym 2 -> state 6 [term 0:REDUCE(with prod 3)]
[term 2:SHIFT(to state 1)] # Goto state #6 [term 3:REDUCE(with prod 3)]
———————— REDUCE_TABLE --------
= From state #4
[non term 2->state 6]

@@V

@%

reduce (T > NUM)
shift, go to state 1
= (1)

@@

#

NUM

Lab 4 27

https://www.skenz.it/compilers Laboratory n° 4

Formal Languages and Compilers

Reduce with prod #1 [NT=1, SZ=3]
Reduce rule: top state 0, Ihs sym 1 -> state 3
Goto state #3

~ = |

-------- ACTION_TABLE -------

From state #6

[term 0:REDUCE(with prod 1)]

[term 3:REDUCE(with prod 1)]

———————— REDUCE_TABLE --------

From state #0

[non term 1->state 3] [non term 2->state 2]

oW~ o

T o] [eor)

g

reduce (exp -)‘exp + f)

= (exp)

@@

https://www.skenz.it/compilers

stefano.scanzio@polito.it

Laboratory n° 4

