POLITECNICO DI TORINO

(01JEUHT) Formal Languages and Compilers
Laboratory NS

Stefano Scanzio
mall: stefano.scanzio@polito.it

Web: http://www.skenz.it/compilers

Inherited attributes

Are useful to express the dependency of a production on

Its context.

Example:

a,b:int;

D® LT L.type = T.type

L® L,",'id L,.type = L.type; put(id.name,L.type)
L® id put(id.name,L.type)

T ® 'integer T.type =type_ int

L-attributed grammar

The order in which attributes are evaluated depends on the
order in which the parse tree iIs created or visited.

Usually, parser follow the same order of the depth-first visit
algorithm.

An L-attributed grammar is defined as a grammar whose
attributes' values can be calculated by means of a depth-first
visit of the parse tree.

In these grammars, information propagates from left to right
(within the parse tree).
The previous grammar is not an L-attributed grammar

Information propagates from right to left
CUP manages only L-attributed grammar

L-attributed grammar

int a, b;

D® TL?Y L.type = T.type

L® L, "' Id L,.type = L.type
put(id.name,L.type)

L ® id put(id.name,L.type)

T ® 'Integer T.type =type int

Calculating inherited attributes

In a bottom-up parser, memory is not allocated in the semantic
stack until the corresponding symbol is recognized.

This Is troublesome for handling inherited attributes.

If the grammar Is an L-attributed one, this issue can be tackled,
possibly with the use of markers:

Marker: non-terminal that is expanded with @symbol.

Calculating inherited attributes

A production with inherited attributes:

D ® TldS lid.type = T.type
id ® ID put(ID.name,lid.type)

Stack before Iid
IS reduced

Calculating inherited attributes (1)

To access to the semantic values stored in the stack in a given
position, use the function:

Object stack(int position)
parser code {:

public Object stack (int position){ « stack(0) is the semantic
// returns the object at the specified position @l Vvalue associated with the
/I from the top (tos) of the stack symbol in the top of the
return(((Symbol)stack. stack;

elementAt(tos+position)).value); * stack(n) is the semantic
value associated with the

symbol in the position
top+n of the stack

Calculating inherited attributes (Il)

The 'type' attribute of 'lid" is
Inherited.
Its value Is present in the

semantic stack (in the position of
'T") before 'lid" Is created.

However, it is beyond the
semantic scope of the 'lid'
ID production.

name: |

D

T lid

Calculating inherited attributes (l1)

With the assumption that the 'lid' symbol is always preceded by a
type identifier:

lid ::= ID:name {:
String type = (String) parser.stack(-1);
RESULT = new String (type
put(name, RESULT);

'}

Esempio

top
stack(-1)

Calculating inherited attributes
by means of markers

If the rule lid ::=ID CM |id ; Is
added, it Is not true anymore
that 'lid" is always preceded by a
type identifier.

In the case of the rule:

lid ::= ID;

the symbol preceding 'ID' in the
stack before reducing is 'CM’

Calculating inherited attributes
by means of markers

D By adding an empty rule
(), one can ensure that
/\ the rule lid::=ID is preceded by a
semantic value
type: int The marker is used to move a
semantic value in a desired

\ position in the stack
to have easier sematic

' Empty lid actions is always better to have
name: | type: int
lid :=lidCMID | ID;
Anyhow, in some grammars, also

using left recursive lists, maré_;" s 10
needed e

Example:
Calculating inherited attributes by means of markers

lid ::=ID:name {:
RESULT = (String) parser.stack(-1);
put(name, RESULT);

'}
lid ::=ID:name CM Empty lid {: GRAMMAR
RESULT = (String) parser.stack(-1);
put(name, RESULT); D ==TldS:
'} Lid ::=ID CM Empty lid
| ID ;
Empty ::={: Stk aat
RESULT = (String) parser.stack(-2);
'}

Lab 5

Intermediate actions

In order to avoid explicitly introducing a non-terminal

with an empty production, one can use In the right-hand
side of the production an

Intermediate actions are automatically substituted with
a non-terminal symbol, which in turn is given by an
empty production.

Intermediate actions: example

The following code:

lid ::=1D:name CM Empty lid ;
Empty ::=;

can be rewritten as:

lid ::=ID:name CM

lid {:
RESULT = (String) parser.stack(-1);
put(name, RESULT);

Example: marker (1)

Import java_cup.runtime.*;

%%

Y%cup

%unicode

nl = \n|[\r|\n\n

id = [a-zA-Z][a-zA-Z0-9_]*

type = int | float | char | double

%%

{ return new Symbol(sym.CM);}

{ return new Symbol(sym.S);}

{type} { return new Symbol(sym.TYPE, new String(yytext())); }
{id} { return new Symbol(sym.ID, new String(yytext())); }

i} [\ {5

Example: marker (I

Import java_cup.runtime.*;

parser code {:
// Return semantic value of symbol in position (position)
public Object stack(int position) {
return (((Symbol)stack.elementAt(tos+position)).value);

}
H

terminal CM, S;

terminal String TYPE, ID;
non terminal goal, list_decl;
non terminal String decl, lid;

start with goal;

goal ::=list_decl {: System.out.printin("PARSER: Recognized grammar!!");
3¢

list_decl ::=| list_decl decl;

Example: marker (111)

decl ::=TYPE lid:x S {:
System.out.printin("PARSER: Found declaration of type: " + x);
3¢

lid ::= ID:name CM {:
RESULT = (String) parser.stack(-2);
'}
lid {:
RESULT = (String) parser.stack(-1);
System.out.printin("PARSER: put(" + name +", " + RESULT +")");

lid ::= ID:name {:
RESULT = (String) parser.stack(-1);
System.out.printin("PARSER: put(" + name + ", " + RESULT +")");

Lab 5

Transforming the grammar

It is possible to avoid using inherited attributes by
transforming the grammar.

D— LT D— idL
T — Integer | real L — idL|"T
L — L'id]|Id T — Integer | real

Handling semantic errors

Semantic errors are usually handled in the actions
assoclated to productions

Usually, actions verify:
That operands types are compatible
That variables and functions are declared

That the parameters passed to a function are coherent
with the function prototype

Intermediate code generation:
the WHILE statement

As an example of intermediate code generation, a simple
WHILE statement :

while _c ::= WHILE (a > 0) {/* something */ }

| cond || stmt |

can be translated in the following intermediate code:

Where GOTOF is a jump

EVAL cond Instruction executed only if the
GOTOF L1 result of the above EVAL command
stmt IS O (i.e., FALSE)

GOTO LO LO and L1 are labels

Intermediate code generation:
the WHILE statement

A possible solution of the WHILE problem that uses
Inherited attributes Is:

wc ;= WHILE cond NTO:x stmt {: Integer[] | = x;
System.out.printin("GOTO L" +l[0]);
System.out.print("L"+I[1]+":"); :};
NTO ::={: RESULT = new Integer[2];
RESULT[0] = genLabel(); //LO:
RESULT[1] = genLabel(); //L1:
System.out.print("L"+RESULT[O]+":");
System.out.printin("EVAL"+parser.stack(0));
System.out.printin("GOTOF L"+RESULT[1]); :};

Lab 5

