POLITECNICO DI TORINO

(01JEUHT) Formal Languages and Compilers
Laboratory N°6

Stefano Scanzio

mail: stefano.scanzio@polito.it




Type checking

Type expressions
Symbol tables
Implementation of a type-checker




Type Checking

Type Checking is the process used for the verification of types
constraints:

Can be performed at compilation time (static check) or at execution time
(dynamic check)

Dynamic types appear more often in interpreted languages, whereas
compiled languages favor static types

Static checking is one of the main semantic tasks performed by a
compiler

Example of static check:
int a;
float b;

a=2.5;/* Correctin c and c++, not correct in Java */
b =1.5;/* Correct in c and c++, not correct in Java ( b=1.5f; )




Type Systems

Base types
Programming languages typically include base types for:
numbers (int, float), characters, booleans
Compound and constructed types

Programmers need higher level abstractions than the base types,
such as lists, graphs, trees, tables, etc.

Programming languages provide mechanisms to combine and aggregate
objects and to derive types for the resulting objects

arrays, structures, enumerated sets, pointers

A type system consists of a set of base types and a set of type
constructors

array, function, pointer, struct (class, list, hash)

Using base types and type-constructors each expression in a
program can be represented with a type expression




Type-expressions

Generally, types can be divided in :
= Primitive types (int, float, char) types

= Composite types (struct, union, pointer, array) d?;r?gefagec

Primitive types comprises all the types necessary to the
formalization of a given language (int, float, char,...) together
with 2 special ones:

® void : stating the absence of a type,

m type_error : stating an error found during the type checking phase.

Type expressions

m A type-expression is either a base type or is formed by applying a
type constructor to a type-expression




Type Constructors

Array: array (
m | : size of the array
m T :type expression

1 T )

Type constructor
examples referred to
the C language

Pointers: pointer ( T )

Product: T, X T,

Structure: struct ( T )
Examples:

Declaration:

char v[10] Type expression:

array (10, char)

struct {

int 1i; struct ((1 x int) x (s x array(5,char)))
char s[5];

}




Type Constructors: Functions

A function maps an element of its own domain to an
element in its own range.

Functions: T, —> T,
T, : domain type
T, : range type

The function int* f(char a, char b) is represented using
the following type expression:
(char x char) — pointer (int)




Types Graph

An effective way of representing type expressions consists in
the use of graphs (irees or DAGS).

(char x char) — pointer (int)

ﬁ\ /\

pointer X pointer

~

char char integer integer
TREE




Construction of type-expressions

A type checker for the C language could be implemented by
means of the following grammar and semantic rules:

D
\2
\2

TVI'Y

Vv

VI, 'V

Vv "V,

V Va

Va— Va; [ num T
Va —id

I 1 1]

J

V1.type=T.type

V.type=Vl1l.type

V.type=Vl1l.type

V,.type=pointer (V.type)
Va.type=V.type

Va, .type=array (num.val,Va.type)

put (id.name, Va.type) ;




Construction of type-expressions (2)

not an L-
attribute
grammar!




Construction of type-expressions (rewriting
of the prev. example)

D - TVI o V1.type=T.type

VI - V V.type=Vl. type

VI - V|1 . V.type=Vl. type

V - PidA P .base=V.type
A .base=P.type
put (id.value, A.type)

P - ¢ P.type=P .base

P - P1 e P .type=pointer (P, .type)
P, .type=P .base

A - ¢ A.type=A.base

A - A1 '[' num ']' A.type=array (num.val,6 A, .type)

A, .type=A.base

Lab 6




Types names

In many languages it is possible to assign explicit names to

types.

Example:

typedef cell* link; type link = “cell;
link p; var p : link;
cell* q; var q : “cell;

Do variables p and g belongs to the same type? Answer
depends on the approach used for checking it.

Structural equivalence.

Names equivalence

In C structural equivalence is used while other languages (e.g.,
pascal) use names equivalence.

Lab 6




Structural Equivalence

Two expression are equals if:
They belong to the same primitive type

They are based on the application of the same types constructors to
equivalent types.

Using a tree based representation for type expression it is
possible (and convenient) to use a recursive visit algorithm in
order to verify the equivalence.




Type checker

A type checker comprises a set of interoperating modules:
scanner: lexicon recognition
parser: checks the syntax and adds the semantic,
type-expression manager,
symbol table manager.

Symbol table
expression




Symbol table

Symbol tables associates values to names in order to
make accessible the semantic information related to
an identifier outside of the context where it has been
declared.

Information related to each name are used in order to
verify the semantic correctness of identifiers usage
within a program.




Designing a Symbol Table

A symbol table can be implemented using different
data structures:

Unordered Lists

Ordered Lists

Binary Tree

Hash Table

BTree ...

This choice is based on the number of symbols to
store, on the required performances and on the
complexity of the code to be produced.




Symbol table: HashMap

import java.util. HashMap;
// Initializing the table
HashMap<String, String> symTable = new HashMap<String, String> ();

// Inserting entries: int a; float b;
symTable.put("a", "int");
symTable.put("b", "float");

// Get the value related to key "a"
String tipo = (String) symTable.get("a");
System.out.printin(tipo);

// Deleting entry
symTable.remove("a");

// Deleting all entries
symTable.clear();




Type expression

Type expressions (naturally represented by means of trees of
types) can be transformed into a different internal
representation (i.e., a Class).

The management of type expressions requires
® The definition of the data structure associated to each graph node
= The definition of primitives that operate on nodes

Nodes should be capable of representing the different type
constructor and the base types as well.

Primitives are required in order to hide the internal
representation of nodes thus allowing the user to produce the
easiest code possible.




Implementing type expressions

Each node of a types graph comprises:
a tag, representing the type of node;
A set of different fields depending on the type of data to be stored

public class te_node {
public int tag; // BASE, ARRAY, POINTER,
public int size; // Number of elements in array
public int code; // Base type: INT, CHAR, FLOAT,

// Only for structs
public String name;// Struct name

// Left and right children
private te_node left, right;

Lab 6




Implementing type expressions

The module charged to manage Type Expressions should offer the following
primitives:

public class te_node {

public int tag;

public static te_node te_make base (int code);

public static te_node te_make_pointer (te_node base);

public static te_node te_make_array(int size, te_node base);

// Only for structs and functions

public
public
public
public
public
public

static
static
static
static
static
static

te_node te_make_product (te_node 1, te_node r);
te_node te_make_name (String name);

void te cons_struct (te_node str, te _node flds);
te_node te_make_fwdstruct (String name);

te_node te_make_struct (te_node flds, String n);
te_node te_make_ function(te _node d, te node r);

Lab 6




Type checker: complete grammar

S ::= /* empty */ Field ::= T Vlist
| S Decl ';'
: ' ;
14
Vlist ::= V
Decl ::= T Vlist | Vlist ',' V
| TYPEDEF T ID ,
14
' V ::= Ptr ID Array
T ::= TYPE ,
| STRUCT ID '{' SFL '} X X
| STRUCT '{' SFL '} Ptr ::= /* empty */
L S |
| STRUCT ID | Ptr
; ;
, Array ::= /* empty */
afl o es= roeld | Array SO NUM SC

| SFL Field




Type checker: Semantic

Decl == T Vlist S;
T == TYPE:1; {: RESULT=te make base(t); :}
Viist::= Vit {: RESULT=(te_node)t; :}

| Vlist:t','NTO V {: RESULT = t; :}
NTO ::= /* empty */ {: RESULT=(te_node)stack[top-1]; :}
Vv Ptr ID:a Ary:t {: add _var(a,t);

RESULT= (te_node) stack[top—-3]; :}

Ptr ::= /*empty */ {: RESULT=(te_node)stack[top]; :}
| Ptr:p "™ {: RESULT=te_make_pointer (p); :}
Ary = /* empty */ {: RESULT=(te_node)stack[top-1]; :}

| Ary:a SO NUM:b SC {: RESULT=te_make_array(b,a); :}




Type checker: Semantic (II)

char **a, *b[2][3];

Parse Tree v

/ |
PTR

s




Type checker: Semantic (I1I)

Parse Tree

\
Vllst

T- NTO PT
| Y@

TYPE L*a | é é

P

Ay

@

IDa § SO NUM SC

SO NUM SC




Exam 1

// Definition of the product type:
(taste: 12, perfume: 8 ) -> wine
( taste: 10, transparency:2 ) -> honey

// Description of the products

wine: * taste, + perfume = barbera DOC;
wine: * taste, * perfume = barolo di annata;
wine: - taste, / perfume = a stinky wine;

honey: * taste, * transparency = acacia honey;




Thesis

List: https://www.skenz.it/ss/theses
About myself: https://www.skenz.it/ss




About myself

2004 — Finished my studies at Politecnico di Torino Iin
Computer Science at DAUIN

2008 — Ph.D. at DAUIN in Automatic Speech
Recognition
In collaboration with Loquendo (now Nuance)

Specifically on Artificial Neural Networks and classification
algorithms

2009 — Research Fellow at IEIIT (institute of the CNR)
CNR is the biggest ltalian research organization
IEIIT institute is in Politecnico di Torino (near room 12, 4°floor)

2012 — Won a permanent position at CNR as a
Researcher




Current research activities

Communication protocols
Industrial networks require a high degree of determinism
Easy to obtain in wired networks, but in wireless ones ?7??

Real-time operating system (Sometimes most of the
indeterminism is inside the PC)
Use of real-time extensions of Linux kernel

Properly optimize the code (threads, kernel modules,
communication between kernel and user spaces)

Industrial Internet of Things (lloT)




Current research activities

Synchronization protocols
Nodes must have the same notion of time (us precision or less)

It is a very complex argument that involves the network,
operating system, hardware, control algorithms for clock
correction, ...

Machine learning applied to industry

Complete list of research activities:
https://www.skenz.it/ss/research

Collaborations with: Comau and Ferrero

Lab 6




Programming languages

for the fastest parts of the code (i.e., applications
with real-time requirements)

for post analysis of experimental data or to
coordinate experiments

operating system, and in particular:

Linux bash shell
Threads
Processes




For more detalils...

Read my papers...

https://www.skenz.it/ss/publications
Click on the paper
You are redirected to the relevant web page for download

REMEMBER: a PC inside the network of the “Politecnico di Torino”
has to be used (otherwise you cannot access the paper)

(Citations: https://scholar.google.it/citations?user=yqyzGToAAAAJ&hl=en )

Or better call myself (011 090 5438) or write an email
Or even better...pass into my office

More detalls regarding thesis: https:/www.skenz.it/ss/theses

Lab 6




