Formal Languages and Compilers

stefano.scanzio @polito.it

POLITECNICO DI TORINO

(01JEUHT) Formal Languages and Compilers
Laboratory N°6

Stefano Scanzio
mail: stefano.scanzio@polito.it

Type checking

® Type expressions
® Symbol tables
® /mplementation of a type-checker

Lab 6 1

Lab 6

Type Checking

® Type Checking is the process used for the verification of types
constraints:

m Can be performed at compilation time (static check) or at execution time
(dynamic check)

= Dynamic types appear more often in interpreted languages, whereas
compiled languages favor static types

m Static checking is one of the main semantic tasks performed by a
compiler

® Example of static check:
int a;
float b;

a=2.5;/* Correct in c and c++, not correct in Java */
b = 1.5; /* Correct in ¢ and c++, not correct in Java (b=1.5f;)

Type Systems

® Base types
m Programming languages typically include base types for:
A numbers (int, float), characters, booleans
® Compound and constructed types
m Programmers need higher level abstractions than the base types,
A such as lists, graphs, trees, tables, etc.
m Programming languages provide mechanisms to combine and aggregate
objects and to derive types for the resulting objects
| arrays, structures, enumerated sets, pointers
® A type system consists of a set of base types and a set of type
constructors
m array, function, pointer, struct (class, list, hash)
® Using base types and type-constructors each expression in a
program can be represented with a type expression

Lab 6 4

Lab 6

Type-expressions

® Generally, types can be divided in :
m Primitive types (int, float, char)
m Composite types (struct, union, pointer, array)

types
defined in C
language
® Primitive types comprises all the types necessary to the
formalization of a given language (int, float, char,...) together
with 2 special ones:
m void : stating the absence of a type,
m type_error : stating an error found during the type checking phase.

® Type expressions

m A type-expression is either a base type or is formed by applying a
type constructor to a type-expression

Type Constructors

® Array: array(I , T
m | :size of the array
m T : type expression

)

Type constructor
examples referred to
the C language

® Pointers: pointer(T)
® Product: T, X T,
® Structure: struct(T)
Examples:
Declaration:
char v[10] Type expression:

array (10, char)

struct {
int i; struct((i x int) x (s x array(5,char)))
char s[5];

}

Lab 6 7

Lab 6

http://www.skenz.it/compilers

Laboratory n° 6

Formal Languages and Compilers stefano.scanzio @polito.it

Type Constructors: Functions Types Graph
® A function maps an element of its own domain to an ® An effective way of representing type expressions consists in
element in its own range. the use of graphs (trees or DAGs).
(char x char) — pointer(int)
® Functions: T, > T, _ _
m T, : domain type T T~ _
m T, : range type X pointer X pointer
® The function int* f(char a, char b) is represented using / \
the following type expression: char char integer char integer
(char x char) — pointer (int) TREE DAG
Lab 6 9 Lab 6 10
Construction of type-expressions Construction of type-expressions (2)
® A type checker for the C language could be implemented by D
means of the following grammar and semantic rules: |
D ->TVIY V1.type=T.type
VI - V V.type=Vl.type
VI - VI;''V V.type=Vl.type
vV - "™ V1 V,.type=pointer (V.type)
V — Va Va.type=V.type
Va — Va1 '[' num ']' Va,.type=array (num.val, Va.type) ggt"abr:nl:
Va —id put (id.name, Va.type); grammar!
char’*% argv1 [1ol 1
Lab 6 11 Lab 6 12

Construction of type-expressions (rewriting
Types names
of the prev. example)

D> TVIY V1.type=T.type ® In many languages it is possible to assign explicit names to
VI 5 V V.type=Vl.type types.
VI - V|1 ' \ V.type=Vl.type
V 5 PidA P.base=V.type ® Example:

A.base=P.type typedef cell* link; type link = “cell;

put (id.value,A.type) link p; var p : link;

cell* qg; var q : “cell;
P e o F-type=p 'l_jase ® Do variables p and q belongs to the same type? Answer
P - P i'tgpe:f’:l::::“’l‘type) depends on the approach used for checking it.
1 EYPEEER. m Structural equivalence.
m Names equivalence
A > ¢ A.type=A.base . . .
- . ® In C structural equivalence is used while other languages (e.g.,

A - A Tnum]] A.type=array (num.val,A,.type) pascal) use names equivalence

A,.type=A.base)

Lab 6 13 Lab 6 15

http://www.skenz.it/compilers Laboratory n° 6

Formal Languages and Compilers

stefano.scanzio @

polito.it

Structural Equivalence

® Two expression are equals if:
m They belong to the same primitive type
m They are based on the application of the same types constructors to
equivalent types.

® Using a tree based representation for type expression it is
possible (and convenient) to use a recursive visit algorithm in
order to verify the equivalence.

Type checker

® A type checker comprises a set of interoperating modules:
m scanner: lexicon recognition
m parser: checks the syntax and adds the semantic,
m type-expression manager,
m symbol table manager.

Symbol tablel I Parser I expTr\égzion
Lab 6 16 Lab 6 17
Symbol table Designing a Symbol Table

® Symbol tables associates values to names in order to
make accessible the semantic information related to
an identifier outside of the context where it has been
declared.

® Information related to each name are used in order to
verify the semantic correctness of identifiers usage
within a program.

® A symbol table can be implemented using different
data structures:
m Unordered Lists
m Ordered Lists
m Binary Tree
m Hash Table
mBTree ...

@® This choice is based on the number of symbols to
store, on the required performances and on the
complexity of the code to be produced.

Lab 6 18

Lab 6

21

Symbol table: HashMap

import java.util. HashMap;
// Initializing the table
HashMap<String, String> symTable = new HashMap<String, String> ();

// Inserting entries: int a; float b;
symTable.put("a", "int");
symTable.put("b", "float");

// Get the value related to key "a"
String tipo = (String) symTable.get("a");
System.out.printin(tipo);

// Deleting entry
symTable.remove("a");

// Deleting all entries
symTable.clear();

Type expression

® Type expressions (naturally represented by means of trees of
types) can be transformed into a different internal
representation (i.e., a Class).

® The management of type expressions requires
m The definition of the data structure associated to each graph node
m The definition of primitives that operate on nodes

® Nodes should be capable of representing the different type
constructor and the base types as well.

® Primitives are required in order to hide the internal
representation of nodes thus allowing the user to produce the
easiest code possible.

Lab 6 22

Lab 6

23

http://www.skenz.it/compilers

Laboratory n° 6

Formal Languages and Compilers stefano.scanzio @polito.it

Implementing type expressions Implementing type expressions
. ® The module charged to manage Type Expressions should offer the following
® Each node of a types graph comprises: primitives:
m atag, representing the type of node; public class te_node {
m A set of different fields depending on the type of data to be stored public int tag;
public class te_node { public static te_node te_make_base(int code);
public int tag; // BASE, ARRAY, POINTER, .. public static te_node te_make_pointer(te_node base);
public int size; // Number of elements in array public static te _node te_make_array(int size, te_node base);

public int code; // Base type: INT, CHAR, FLOAT,
// Only for structs and functions

7/ only for structs public static te_node te_make_product (te_node 1, te_node r);

ubli Stri // st " public static te_node te_make_name (String name);
p ic ring name; ruct name

public static void te_cons_struct (te_node str, te_node flds);
public static te _node te_make_fwdstruct (String name);

public static te_node te_make_struct (te_node flds, String n);
public static te_node te_make_function(te_node d, te_node r);

// Left and right children
private te_node left, right;

Lab 6 24 Lab 6 25
.
Type checker: complete grammar Type checker: Semantic
Decl = T VlistS;
S ::= /* empty */ Field ::= T Vlist T = TYPE {: RESULT=te_make_base(t); :}
| S Decl ';' 3
i ! Vliist::= Vit {: RESULT=(te_node)t; :}
Vlist ::=V | Vlist:t',)NTO V {: RESULT = t;
Decl ::= T Vlist | vliist ',' V H
| TYPEDEF T ID ; NTO ::= /* empty */ {: RESULT=(te_node)stack[top-1]; :}
! V ::= Ptr ID Array i
T := TYPE . V = PtriD:a Ary:t {: add_var(a,t);
i
| STRUCT ID '{' SFL '}' RESULT= (te_node) stack [top-3]; :}
| STRUCT '{' SFL '}' Ptr ::= /* empty */
| Ptr '*! H
| STRUCT ID Ptr::= I empty */ {: RESULT=(te_node)stack[top]; :}
i i | Ptrp* {: RESULT=te_make_pointer(p); :}
Array ::= /* empty */ ;
SFL ::= Field
| SFL Field | Array SO NUM SC Ary = /* empty */ {: RESULT=(te_node)stack[top-1]; :}
) . | Ary:a'SONUM:b SC {: RESULT=te_make_array(b,a); :}
r r .
Lab 6 27 Lab 6 28

Type checker: Semantic (II) Type checker: Semantic (I1I)

char **a, *b[2][3];
char **a, *b[2][3];

Parse Tree

V]lSt ‘ N Ary

Carray >
NTOPT
[\\

€ € P IDa g 50 NUM SC SO NUM SC

Parse Tree v
| Decl

PR
TPhgmy € P P Da g

Lab 6 29 Lab 6 30

http://www.skenz.it/compilers Laboratory n° 6

Formal Languages and Compilers

stefano.scanzio @polito.it

Exam 1

/I Definition of the product type:
(taste: 12, perfume: 8) -> wine
(taste: 10, transparency:2) -> honey

// Description of the products

wine: * taste, + perfume = barbera DOC;
wine: * taste, * perfume = barolo di annata;
wine: - taste, / perfume = a stinky wine;
honey: * taste, * transparency = acacia honey;

Thesis

List: https://www.skenz.it/ss/theses
About myself: https:/www.skenz.it/ss

Current research activities
About myself Industrial Automation

® 2004 — Finished my studies at Politecnico di Torino in
Computer Science at DAUIN

® 2008 — Ph.D. at DAUIN in Automatic Speech
Recognition
® |n collaboration with Loquendo (now Nuance)
= Specifically on Artificial Neural Networks and classification

algorithms

® 2009 — Research Fellow at IEIIT (institute of the CNR)
= CNR is the biggest Italian research organization
= |EINT institute is in Politecnico di Torino (near room 12, 4° floor)

® 2012 — Won a permanent position at CNR as a
Researcher

® Communication protocols
® |ndustrial networks require a high degree of determinism
= Easy to obtain in wired networks, but in wireless ones ???

@ Real-time operating system (Sometimes most of the
indeterminism is inside the PC)
= Use of real-time extensions of Linux kernel

= Properly optimize the code (threads, kernel modules,
communication between kernel and user spaces)

® |ndustrial Internet of Things (lloT)

Lab 6 33

Lab 6 34

Current research activities
Industrial Automation

® Synchronization protocols
® Nodes must have the same notion of time (us precision or less)
" |tis a very complex argument that involves the network,
operating system, hardware, control algorithms for clock
correction, ...

® Machine learning applied to industry

® Complete list of research activities:
® https://www.skenz.it/ss/research

® Collaborations with: Comau and Ferrero

Programming languages

® C/C++ for the fastest parts of the code (i.e., applications
with real-time requirements)

® Python for post analysis of experimental data or to
coordinate experiments

@ Linux operating system, and in particular:
® Linux bash shell
" Threads
" Processes

Lab 6 BS)

Lab 6 36

http://www.skenz.it/compilers

Laboratory n° 6

Formal Languages and Compilers stefano.scanzio @polito.it

For more details...

® Read my papers...

https://www.skenz.it/ss/publications

= Click on the paper

" You are redirected to the relevant web page for download

= REMEMBER: a PC inside the network of the “Politecnico di Torino”
has to be used (otherwise you cannot access the paper)

= (Citations: https:/scholar.google.it/citations?user=yqyzGToAAAAJ&hl=en)

@ Or better call myself (011 090 5438) or write an email
@ Or even better...pass into my office
@ More details regarding thesis: https://www.skenz.it/ss/theses

Lab 6 37

http://www.skenz.it/compilers Laboratory n° 6

