
2006-11-07

 1

Formal Languages and Compilers – JFlex & Cup

Using the JFLEX lexer generator and the CUP parser generator, realize a Java program capable of
recognizing a language that allows to describe the operative itinerary of a vehicle
exploring/monitoring a region that can ideally be represented as a bi-dimensional space. The
program should parse and interpret a file (specified as the first parameter in the command line) with
the description of an itinerary according to such language.

Input Language

The itinerary specification file starts with an header section which contains 3 fields:

1. An alphanumeric strings of 8 characters starting with an uppercase character and
representing the vehicle code.

2. The current date according the gg/mm/aaaa

3. A textual description of the itinerary enclosed by <! ….. !>

The vehicle code and the date must be present while the description is optional, they should appear
in the file according to the previous order.

The next section is separated by means of “%%” symbol and contains the specifics for an itinerary.
The itinerary language comprises a set of primitives allowing to control the vehicle:

• Angle(αααα): rotates the vehicle until it is oriented along the direction forming an angle of αααα
with the x axis (counter clockwise). α α α α can be specified both in radians and in degrees and
can be signed; in radians it is expressed as a fraction or a real number followed by the
symbol ‘PI’ (as 3/4PI or -0.5PI) while in radians is expressed simply as a real number.

• Move(k T): moves the vehicle along the current direction. T can represent either a distance
of k meters (T is ‘M’ or ‘m’) or a time of k seconds (T is ‘S’ or ‘s’). k is a real number and
must be positive

• Speed (k): sets the speed of the vehicle to k meters per second, k is a real number and
must be positive.

• AcquireData (k): stops the vehicle for k seconds and acquire data

In the specification file these primitives are separated by means of ‘; ’ symbols and they form a
sequence of commands and can come in any order but Speed(k) must be specified as the first
command and after each AcquireData command.

The language allows for the definition of a for statement that repeats a certain amount of times a set
of commands enclosed by ‘[‘ and ‘]’ . The statement is expressed as:

• for (u)[

……..

]

where u is an integer positive number greater than 0 and specifies the amount of time the execution
of the list of command should be repeated. The set of commands within the for body must begin
with a Speed primitive.

The language allows also for the definition of a choice statement that executes a set of commands
enclosed by ‘[‘ and ‘]’ if they satisfy a given condition. In this language conditions can concerns the

2006-11-07

 2

distance from the starting point or the total time elapsed and support the relational operators ‘>’ and
‘<’ . The statement is expressed as:

• if (T relOp k) [

……

]

where k is a real number and T can be ‘S’ or ‘s’ (representing the time elapsed) otherwise T can be
‘M’ or ‘m’ for the distance from starting point of the itinerary.

The language could therefore contain 3 kinds of blocks (in any order and in any number): simple
command lists, for blocks and if blocks. Notice that for and if statements could not be nested (no
for or if blocks within a for or if block).

Program Objective

The program is required to verify if the file is conform to the syntax of the language and if that is
true, in addition, to calculate the final position with the respect of the starting point as well as the
total of the time elapsed. Global class variables for handling the current speed and angle are
allowed.

NB: Notice that the DeltaX and DeltaY relative a to a segment of length L along a direction
forming an angle Alpha with the X axis can be retrieved as:

deltaX = k * cos(alpha) deltaY = k * sen(alpha)

For this pourpose in java are available the static methods of the class Math: java.Math.sin e
java.Math.cos (and the constant java.Math.PI) they both takes a double as input parameter and
return a double value.

Example

AX23FF34
02/11/2006
<! Route B !>
%%
Speed(3.5);
Move(10 M);
for(4)[

Speed(3);
Angle(-2/3PI);
Move(12.5 S)

]
if(s > 3.5)[
 AcquireData(34);
 Speed(1);
]
Angle(0);
Move(3 S);

Syntax correct

The final position is X = 34.5,
Y = -12.56. The total time
elapsed is 134.5 sec

INPUT

OUTPUT

