Formal Languages and Compilers
26th June 2012

Using the JFLEX lexer generator and the CUP parser generator, realize a Java program capable of
recognizing a language useful to manage auctions.

Input language

The input file is divided into three sections: header, currencies and auctions. Each section is separated
from the other by means of the token “*****7

The header section is composed of two types of tokes:

e <hour>: is an hour with the formats HH:MM or HH:MM:SS and values between 08:31:12 and
23:21:10 (Correct examples are: 08:31, 23:21:09, 12:54:51)

e <code>: it begins optionally with a string of at least 3 characters “X” or “Y” in any order and
in odd number (ex. XXX, XYXYY, XXXXYYY,...), followed by an even number between —138
and 824

@,

Each token is ended by the character “;”. In the header section, the <code> token must appear exactly
two times, while <hour> token must appear at least one time.

The currencies section is composed of a list of at least 3 <currencies>. Each <currency> is com-
posed of a <conversion_rate> (a floating point number with two decimals), of two strings of alphabetic
characters, of the character “:”, of a <user_list>> and it is terminated by the “;” character. <user_list> is
a list possibly empty of users separated by “,”. Each <user> is composed of a <user_code> followed
by a <capital> (a floating point number with two decimals).

<User_code> is a word composed of an odd number of at least 3 alphabetic characters, followed
by a dot “.”, followed by some numbers separated by the character “.”. Numbers have values between
12 and 132 (the numbers must be at least 2 and in even number).

During the analysis of this section the translator will have to create in memory a hash table with key
<user_code> and with associated value the result of the multiplication between the <conversion_rate>
and the <capital>. The result of this operation is the capital in euro owned by a specific user. The
hash table is the only global variable allowed. Solutions using other global variables will not
be accepted.

The third section is composed of a list (possibly empty or with at least 2 elements and in even
number in the case the list is not empty) of auctions.

Each element of the list is composed of the word “Auction”, followed by an integer number, by the
character “.”, by a <product_name> (a quoted string), by the character “.”, by a <duration> (an integer
number), by the word “min”, by an arrow “— >", by a non empty list of <advances> separated by

the character “,” and terminated by the character “;”
An <advance> is composed of a <user_code> followed by the character “:”, by an <advance_time>
(an integer number that represents when the advance has been made), by the character “:”, by a <value>

(a floating point number with two decimals that represents the amount of the advance) and by the word
“euro”.

Goals

The translator must write, for each <advance> made by a user, the <user_code> and the result of the
advance: success or error. See the example. Particularly it must write:

e “Error, advance less than the current auction value”: if the advance is lower then the current
auction value. The auction value is the best advance without errors between the advances before
the current one

e “Error, advance out of time”: if <advance_time> is greater than <duration>

e “Error, available only XX.XX euro”: if the user does not have enough money to buy the object.
XX.XX are money still available for the given user (this value can be obtained from the hash table)

e “New auction price XX.XX euro”: if none of the above errors is detected, the new auction price is
the <value> of the current advance. This value must be printed in place of XX.XX

Assume that each auction start form 0.00 euro, that exist at least one correct advance and that
advances are carried out in a chronological order (the <advance_time> values for a specific auction are
increasing).

At the end of each auction the translator must print the <user_code> of the auction winner and the
price at which the object is adjudicated.

Example

Input:

YYY-26; 21:12:00; 22:12; 562; 09:12:14;

*okokok ok

0.79 dollari euro : Usr.13.13 200.00, Usr.13.14 300.00, Usr.13.15 100.00;
0.81 sterline euro : Usr.14.13 1000.00;

1.00 euro euro : Usr.15.13 50.00, Usr.15.14 80.00;
*okokk ok
Auction 1 : "Product *1" : 100 min ->

Usr.13.13 : 2 : 20.00 euro,
Usr.13.15 : 20 : 12.00 euro,
Usr.15.14 : 60 : 70.00 euro,
Usr.15.13 : 65 : 75.00 euro,
Usr.13.13 : 200: 100.00 euro;
Auction 2 : "Product *2" : 20 min ->
Usr.15.14 : 10 : 20.00 euro,
Usr.13.14 : 12 : 20.00 euro;

Output:

Auction 1:

Usr.13.13: New auction price 20.00 euro
Usr.13.15: Error, advance less than the current auction value
Usr.15.14: New auction price 70.00 euro
Usr.15.13: Error, available only 50.00 euro
Usr.13.13: Error, advance out of time
Winner is Usr.15.14 price 70.00 euro

Auction 2:

Usr.15.14: Error, available only 10.00 euro
Usr.13.14: New auction price 20.00 euro
Winner is Usr.13.14 price 20.00 euro

