
Formal Languages and Compilers
20 July 2020

Using the JFLEX lexer generator and the CUP parser generator, realize a JAVA program capable of
recognizing and executing the programming language described in the following.

Input language

The input file is composed of two sections: header and commands sections, separated by means of the
two characters “$$”. Comments are possible, and they are delimited by the starting sequence “(++”
and by the ending sequence “++)”.

Header section: lexicon

The header section can contain 2 types of tokens, each terminated with the character “;”:

• <token1>: it starts with a word composed of at least 7 characters in the set “a” , “b” or “c”,
disposed in any order and, in total, in odd number (e.g., abcabca, aabbccabc). The word is
followed by the character “#”, and optionally by a hexadecimal and even number between −5C
and aB6. Remember that even hexadecimal numbers are those ending with 0, 2, 4, 6, 8, A or a, C
or c, and E or e .

• <token2>: it is a hour with the format “HH:MM:SS” between 07:13:24 and 17:37:43, followed by
the character “:” and by a binary number between 101 and 11010.

Header section: grammar

The header section contains one of these two possible sequences of tokens:

1. at least 5, and in odd number (5, 7, 9,...) repetitions of <token1>, followed by 3 or 21 repetitions
of <token2>

2. three <token2> and any number of <token1> (even 0). This sequence must start with a
<token2>, the second and third repetitions of <token2> can be in any position of the sequence.

Commands Section: grammar and semantic

The commands section is composed of a list of <commands>, which can be possibly empty.
Two types of commands are possible:

• Assignment : it is a <variable> (same regular expression of C identifiers), followed by a “=”, by
an <expr>, and by a ;. This command stores the result of <expr> into an entry of a global symbol
table with key <variable>. This symbol table is the only global data structure allowed in
all the examination, and it can be written only by means of an assignment command.

• Compare: it has the following syntax:

compare <expr1> with <comp list> end ;

where <comp list> is a non-empty list of <comp>, where each <comp> has the following syntax:

<expr2> { <print list> } . For each <comp> for which the result of <expr2> is equal to the
result of <expr1> (more than one <comp> can meet this requirement within the same compare

command), all the <print> commands listed in <print list> are executed. A <print> command
is the word print followed by an <expr> and followed by a ;. The <print> command prints
the results of <expr> into the screen. For the implementation of the compare instruction,
within the grammar rule of the <print> command, use inherited attributes to access
the values of <expr1> and <expr2>, and to decide to execute or not the print action.

1



An <expr> is a typical arithmetical expression, which includes integer numbers or <variable>, paren-
thesis, and “+”, “-”, “*” and “/” operators. An example of <expr> is 3 + (6 ∗ a).

Goals

The translator must execute the language, and it must produce the output reported in the example. For
any detail not specified in the text, follow the example.

Example

Input:

(++ Header section (second type of grammar for the header) ++)

07:13:24:101; (++ <token2> ++)

08:13:10:11001 ; (++ <token2> ++)

aabbccabc#-a; (++ <token1> ++)

10:13:26:1000; (++ <token2> ++)

$$

(++ Commands section ++)

a = 2; (++ assigns 2 to var a ++)

b = 2 + 3 * 2; (++ assigns 2+6=8 to var b ++)

c = (a + 1) * 2; (++ assigns 3*2=6 to var c ++)

compare 3+a with (++ 3+a=5 ++)

3*a { (++ FALSE ++)

print 3;

print a+1;

}

1+ 2*2 { (++ TRUE ++)

print 2; (++ print 2 ++)

print 3; (++ print 3 ++)

}

b-3 { (++ TRUE ++)

print a*2; (++ print 4 ++)

}

end;

Output:
2

3

4

Weights: Scanner 8/30; Grammar 9/30; Semantic 10/30

2


