
Formal Languages and Compilers Laboratory n◦ 3

Formal Languages and Compilers
Laboratory n◦ 3

1 Exercise (mini C)

Using JFLEX and CUP, write a program which recognizes the syntax of a subset of the C language (mini C ).
Given an input file this program must indicate if the file is a correct mini C source.

In particular, the language characteristics are the following:

• main and functions do not exist: thus, the whole program will be written in a single input file which
represents the main.

• Variables of type int and double and one-dimensional vectors of those type can be declared. The variables
cannot be initialized in the declaration phase (e.g. an instruction like int a=0; is not supported).

• The vectors indexes can be variables or integer numbers but complex expressions (e.g. correct assignment
instruction: a[2]=3*b[c]-a[3];; invalid assignment instruction: a[2+4]=0; or a[c+1]=2;).

• Assignment instruction can be executed (exactly like in C). The language allows the use of a particular
print instruction print(<variable>); that allows to print the value represented by the variable with
name <variable> (e.g. print(a[2]); print the vector a value of index 2).

• The while and if have exactly the same syntax of the C language. Handle both the syntax where an
instructions list is enclosed within curly brackets and the case where the if branches contain only one
instruction (i.e. curly brackets are not mandatory).

• The boolean expressions inside the while and if conditions must allow the use of the comparison operators
“==”, “<”, “<=”, “>”, “>=” and the boolean operators “&” (AND), “|” (OR) and “!” (NOT). Handle
correctly the precedence of the operators listed above (e.g. if (3+2-a[4] < 3-3*a[c]+1 & b==3 |

a[2]<=3*b+1)).

1.1 Input file example

An input file example might be the following:

/* Esempio algoritmo di ordinamento Bubble sort */

double x[5];

int i, j;

double swap;

int pos;

/* Inizializzazione vettore */

x[0] = -2.0;

x[1] = -3.0;

x[2] = 3.0;

x[3] = 5.0;

x[4] = 2.5;

/* Bubble sort */

pos = 5;

while(pos > 0){

i = 0;

while (i < pos - 1){

j = i + 1;

if (x[i] > x[j]){

swap = x[j];

x[j] = x[i];

x[i] = swap;

}

i = i + 1;

}

pos = pos-1;

}

/* Stampa risultati */

i = 0;

while(i<5){

print (x[i]);

i = i + 1;

}

2 Exercise (Grammar derived from an exam)

Using Jflex and Cup, write a scanner and a parser which recognize the language for the management of a library.
The input file is subdivided into two sections separated by the symbol “%%” (two percent symbols).
The first section is composed by a non-empty list of writers and the books written by them. Each list element

has the following fields:

Stefano Scanzio 1 http://www.skenz.it/compilers



Formal Languages and Compilers Laboratory n◦ 3

<writer name> > <books list>;
Where <writer name> is a string of letters enclosed by the characters ” (Double quote). <books list> is

a non-empty list of books written by a writer and separated by a “,” (comma).
Each list element is composed as follow:
<ISBN code>:<book title>:<number of pages>:<collocation>
<ISBN code> consists of two numeric characters, followed by a dash, followed by two numeric characters,

followed by a dash, followed by 5 hexadecimal characters, followed by a dash and followed by a letter or a
numeric character. <collocation> (is optional) and is composed by the word LI or LS (letteratura italiana
or letteratura straniera) followed by the genre AV, BO o SO (Avventuroso, biografico or sociale), followed by an
integer number and eventually followed by a letter. The genre LI BO does not exist: handle this case.

The second section is composed of a non-empty list of users. Each list element is defined as follows:
<user name>:<loans list>;
<loans list> is a set of loans associated to a library user, separated by the character “,” (comma).
For each loan the loan date and the book ISBN code are reported. The date is in the format “DD/MM/YYYY”,

where DD is a number between 01 and 31, MM is a number between 01 and 12.
The program must recognize the previously described language and write if it is grammatically correct.

2.1 Input file example

"Hesse Herman" -> 88-17-83457-X:"Narciso e Boccadoro":200:LS SO 127 A,

88-14-24B43-2:"Siddhartha" : 236 : LS SO 127 B,

88-12-34AA3-B:"Lupo della steppa, Il":262:LS SO 127 C;

"Baricco Alessandro"-> 88-17-10625-9:"Seta":100:LI AV 1,

88-17-86563-X:"City":319:LI AV 2 A;

"F. Christiane"-> 88-17-11520-7:"Noi, i ragazzi dello zoo di Berlino":346:LS BO 1;

%%

"Giovanni": 02/10/2006 88-17-11520-7;

"Stefano" : 12/04/2007 88-17-83457-X,

20/09/2007 88-14-24B43-2,

29/09/2007 88-17-11520-7;

"Giovanni": 02/10/2007 88-17-10625-9,

02/10/2007 88-17-86563-X;

3 Exercise (Facultative)

As an extension of the Exercise 1, write a grammar which recognizes the following C language subset:

3.1 C subset to recognize:

• Declaration of variables of all predefined types (with additional modifiers signed and unsigned), arrays
and pointers.

• The definition of functions with an arbitrary number of arguments (from 0 to n) and a returned value
chosen among predefined types.

• Use of arithmetic or boolean expressions that can contain variables and functions of one of the format
specified above.

• Use of conditional constructs if-else, switch, while, do-while and for.

3.2 C subset not to recognize

• Declaration of types using typedef, declaration and use of structures (struct) and unions (union), use
of enum.

• Variables that represent pointers to function.

• Cast

Stefano Scanzio 2 http://www.skenz.it/compilers



Formal Languages and Compilers Laboratory n◦ 3

3.3 Input file example

extern int *fn1(int a, int b, char *c[]);

register int ff;

int fn2() {

static unsigned long int k = 1, i;

for(i = 0; i < 10; i++) {

k-1;

}

}

int main() {

char *miovett[] = {"Inverno", "Estate"};

while(fn1(2,3, miovett) != 0) {

ff++;

}

return ff;

}

Stefano Scanzio 3 http://www.skenz.it/compilers


