
Formal Languages and Compilers

3 September 2015

Using the JFLEX lexer generator and the CUP parser generator, realize a JAVA program capable of
recognizing and executing the language described later.

Input language

The input file is composed of three sections: header, cars and race sections, separated by means of an
even number of “#” characters (at least 4). C++ stile comments (i.e., // <comment>) can be present
in the input file.

Header section: lexicon

The header section can contain 3 types of tokens, each terminated with the character “;”:

• <token1>: it starts with the character “%” repeated an odd number of times, at least 5, or it
starts with 2 o 3 repetitions of the words “**” and “???” in any combination (???**, ??????,
??????, ****,...). The first part of the token is optionally followed by an odd number between
−35 and 333.

• <token2>: it is composed of two dates separated by the character “-” or by the character “+”. A
date has the format YYYY/MM/DD and it is in the range between 2015/12/12 and 2016/03/13,
with the exclusion of the day 2016/01/05. Remember that the month of February has 29 days.

• <token3>: it is the character “$” followed by a binary number between 101 and 101000

Header section: grammar

In the header section, <token2> and <token3> must appear exactly 1 time, instead, <token1> can
appear 0 or more times. Tokens can appear in any order.

Cars section: grammar and semantic

The car section is composed of a list of <cars>. The number of <cars> is even and at least 2. Each
element of the list is composed of a <car name> (a quoted string), followed by a “{”, a non-empty list
of <speeds> in which elements are separated by commas, and a “}”.

A <speed> is composed of a <section name> of the race track (a quoted string), an “=”, a <speed value>
(an unsigned integer number) and the word “m/s”.

At the end of this section, the translator must have filled a hash table that contains all the information
regarding cars, and with keys the <car name>. The hash table is the only global variable allowed
in all the examination, and it must only contain the information reported in the car section
(i.e., after this section its content cannot be written, but only read). Solutions using other
global variables will not be accepted.

Race section: grammar and semantic

The race section is composed of a list, eventually empty, of <print min max> functions followed by
a non-empty list of <performances>.

Each <print min max> function is composed of the word “PRINT MIN MAX”, followed by a “(”,
by a <car name>, a “)”, a “(“, a non-empty list of <section names>, a “)” and a “;”. This function
must print the minimum and the maximum values of the <speeds> of the <section names> listed in

1

the second part of the function and referred to the <car name> reported in the first part of the function.
The <speed> values can be obtained from the hash table.

Each <performance> (i.e., an element of the list of <performances>) is composed of a <car name>,
the symbol “->”, a list of <parts> (which elements are separated by the character “|”), and a “;”.
Each <part> is composed of a <part name> (i.e., the word “PART” followed by an unsigned integer
number), a “:” and a list of <drive stats> in which elements are separated by commas. Each element
of the <drive stats> list is composed of a <section name>, a <distance> (i.e., an unsigned integer
number) and the character “m”.

The translator must compute, for each part, the time needed for the specific <car name> to finish
the part. To compute this time, the <distance> must be divided by the <speed>, obtained by using
<section name> as a key in the hash table. To this extent <car name> must be accessed through
inherited attributes.

At the end of each <performance>, the total time to finish all the parts must be printed.
At the end of the list of <performances>, the <car name> that finished all the parts with the small

amount of total time and the total time must be printed. Produce exactly the output as reported
in the example.

Goals

The translator must execute the language of the cars and race sections.

Example

Input:

// Header section

%%%%%-31; // <token1>

$10111; // <token3>

???**???45; // <token1>

2015/12/25+2016/02/28; // <token2>

####

// Cars section

"CAR_A" {

"curve_1" = 10 m/s,

"straight_1" = 50 m/s,

"curve_2" = 20 m/s,

"straight_2" = 60 m/s,

"curve_3" = 15 m/s,

"straight_3" = 80 m/s

}

"CAR_B" {

"curve_1" = 5 m/s,

"straight_1" = 80 m/s,

"curve_2" = 20 m/s,

"straight_2" = 75 m/s

"curve_3" = 10 m/s,

"straight_3" = 80 m/s

}

######

// Race section

// between 10, 50 and 15 the min is 10 and the max is 50

PRINT_MIN_MAX("CAR_A")("curve_1", "straight_1", "curve_3");

"CAR_A" ->

PART1 : "curve_1" 20 m | // 20/10=2 s

// 400/50+40/20+540/60=8+2+9=19 s

PART2 : "straight_1" 400 m, "curve_2" 40 m, "straight_2" 540 m |

PART3 : "curve_3" 30 m, "straight_3" 640 m // 30/15+640/80=2+8=10 s

;

"CAR_B" ->

PART1 : "curve_1" 20 m | // 20/5=4 s

// 400/80+40/20+540/75=5+2+7.2=14.2 s

PART2 : "straight_1" 400 m, "curve_2" 40 m, "straight_2" 540 m |

PART3 : "curve_3" 30 m, "straight_3" 640 m // 30/10+640/80=3+8=11 s

;

Output:
MIN: 10 MAX: 50

"CAR_A"

PART1: 2.0 s

PART2: 19.0 s

PART3: 10.0 s

TOTAL: 31.0 s

"CAR_B"

PART1: 4.0 s

PART2: 14.2 s

PART3: 11.0 s

TOTAL: 29.2 s

WINNER: "CAR_B" 29.2 s

2

