
Formal Languages and Compilers
Exam

Using the LEX and YACC programs (or Flex and Bison), realize a syntax-driven translator capable 
of recognizing a language that describes a set of products and gives them some scores.

Input Language
The input language defines a series of product types; for each of them a set of attributes that apply 
to its type may be defined. A weight can be assigned to the attributes, useful for the comprehensive 
assessment of the product.
Product descriptions that assign a value to the attributes may follow the definition of the product 
types. The definition of a type consists of a list of attributes followed by an arrow ("->") and the 
name of the products type. The attributes list is enclosed within round brackets and consists of a 
sequence of definitions of attributes, separated by commas (','). The attribute definitions are made 
by the attribute name, followed by a colon (':') and by the weight assigned to that attribute. The 
weight is an unsigned integer. The names of the types and of the attributes are compliant with the 
rules of C identifiers.
Several definitions of types may be present; and they won't be separated by any character. The last 
definition of a type will be followed by ('.'), that separates the definitions of the types from the 
product descriptions. Multiple product descriptions may appear, each of them having the following 
structure:

<type name> : <reviews> = <product name> ;

The type name must be one of the previously defined types. The reviews consist of a sequence of 
valuations separated by commas (','). The product name is represented by a sentence. 
A valuation consists of a value, described by a symbol ('*', '+', '/''-') and by an attribute name. The 
meaning of symbols is described below:

Symbol Meaning Value

* Excellent 3

+ Good 2

/ Sufficient 1

- Unsatisfactory 0

Attribute names must be those defined for the type of product. It is not necessary for all the 
attributes defined for a product type to appear in the product description.
A sentence consists of a set of words and numbers separated by any number of white spaces. The 
words are sequences of alphabetic characters, that can be lower case or upper case characters. The 
numbers are unsigned integers.
The program must be able to recognize and ignore comments that follow the C++ syntax of C, 
namely beginning with the characters "/ /" and ending with a carriage return.

The purpose of the program
The program should recognize the previously described language, then it must print a list of 
products with their score divided by type.
The score of a product is calculated as follows. For every attribute of the product type its weight is 
multiplied by the value assigned in the product description. The score of the product will be the sum 
of all the values obtained in this way. In other words, being pi the weight of the i-th attribute, vi the 



value assigned to the i-th attribute within the product in question and N the number of attributes; the 
score of a product will be computed as follows:

Score = 
i=1

N

pi · vi

When a syntactic error is encountered, the program must report it and stop the execution: no need 
for management and error recovery.

Example
Input file:

// Definition of the product types: 
( taste : 12, perfume : 8 ) ­> wine
( taste : 10, transparency: 2 ) ­> honey 
.
// Description of the products: 
wine: * taste, + perfume = barbera DOC;
wine: * taste, * perfume = barolo di annata; 
wine: ­ taste, / perfume = a stinky wine;
honey: * taste, * transparency = acacia honey;

The program should produce the following output (the output format can be different, but it should contain 
the same information):

Achieved scores.
barbera DOC, 52
barolo di annata, 60 
a stinky wine, 8 
acacia honey, 36


