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Abstract—The ability to predict the behavior of a wireless
channel in terms of the frame delivery ratio is quite valuable,
and permits, e.g., to optimize the operating parameters of a
wireless network at runtime, or to proactively react to the
degradation of the channel quality, in order to meet the stringent
requirements about dependability and end-to-end latency that
typically characterize industrial applications.

In this work, prediction models based on the exponential
moving average (EMA) are investigated in depth, which are
proven to outperform other simple statistical methods and whose
performance is nearly as good as artificial neural networks, but
with dramatically lower computational requirements. Regarding
the innovation and motivation of this work, a new model that we
called EMA linear combination (ELC), is introduced, explained,
and evaluated experimentally. Its prediction accuracy, tested on
some databases acquired from a real setup based on Wi-Fi
devices, showed that ELC brings tangible improvements over
EMA in any experimental conditions, the only drawback being
a slight increase in computational complexity.

I. INTRODUCTION

New paradigms like Industry 4.0 [1] and beyond [2] demand
for industrial networks with high flexibility and the ability
to suitably tackle heterogeneity [3]. In this respect, wireless
communication technologies are one of the main enablers,
by supporting mobility and automatic (re)configurability of
industrial systems [4]. The ever increasing need for wire-free
solutions in industries, homes, and cities, implies that specific
research activities, aimed at making the related technologies
capable to fulfill the very strict requirements, in terms of
dependability and end-to-end latency, of industrial networks
[5], [6], [7], [8], [9], [10], are more and more demanded.
Besides communication, services like localization [11], time-
synchronization [12], and roaming [13] have to be also pro-
vided for enabling fully wireless industrial systems (required,
e.g., when devices are characterized by mobility), by adapting
the existing approaches to the specific wireless technology.

If the future quality of a wireless link could be predicted in
advance with a certain accuracy, e.g., in terms of frame de-
livery ratio (FDR), the communication protocol could exploit
this information for trying to meet the specific requirements
of industrial applications. For instance, when the quality of
a specific channel is expected to worsen, the application can
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switch to another channel (suffering from less disturbance) to
preserve communication reliability [14] or to prevent energy
consumption from increasing [15]. As an alternative, it can
change some network/communication parameters or diminish
the amount of best-effort traffic (shaping) to privilege time-
sensitive data exchanges. Among the many wireless technolo-
gies available today, Wi-Fi and 5G are the most promising for
applications with higher demands in terms of dependability
and end-to-end latency, while allowing at the same time high
throughput. This work is based on Wi-Fi, but the technique
we present for channel quality prediction can be applied with
minimal changes to other wireless communication technolo-
gies as well.

Many research works made use of machine learning (ML)
for channel quality prediction in Wi-Fi [16]: in [17] artificial
neural networks (ANN) were applied to artificial data; in [18],
[19] they were exploited on data derived from real devices; in
[20], [21], [22] ML is used for the prediction of the channel
gain and/or the received signal strength. The use of ANNs
is quite expensive from the computational point of view, and
consequently in [23] the benefits provided by less CPU-hungry
approaches like moving averages and regression models were
analyzed in depth. That work showed that the exponential
moving average (EMA) is able to offer the best performance
among non-ANN models, and behaved almost as well as
an ANN trained only on frame losses. Quite interestingly,
EMA featured the lowest computational complexity among the
analyzed models. This makes it suitable for implementation in
any kind of (embedded) device.

In this paper, an algorithm named EMA linear combination
(ELC) is presented and evaluated over a 50-day-long test
database, acquired in a real setup that includes several Wi-Fi
nodes operating on different channels. The optimal parameters
of this algorithm are found by minimizing the mean squared
error for the training database. Results show that ELC provides
consistent improvements when compared to the simpler EMA
model, yet keeping computational complexity relatively low.
The following Section II introduces the concept of channel
prediction and the EMA model analytically, and Section III
describes the new ELC algorithm, which is evaluated in
Section IV, before the conclusive remarks of Section V.
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II. CHANNEL PREDICTION AND EMA MODEL

This work considers a real Wi-Fi link between a STA and an
AP. The wireless channel was probed periodically by means
of confirmed one-shot transmissions (no retries allowed) with
a period Ts = 0.5 s, corresponding to a frequency of 2Hz.
The receiver node (the AP, in this case) confirms the correct
arrival of the i-th frame by returning an Acknowledgement
(ACK) frame. The correct reception of this ACK frame by
the sender node is recorded as the outcome xi = 1 (success).
Otherwise, if the ACK frame is not received, we logged xi = 0
(failure). The above measurement procedure was practically
implemented in real Wi-Fi devices by following the indications
reported in Subsection IV-A.

A database consists of an ordered sequence of outcomes
D = {x1, ..., xi, ..., x|D|}, obtained from the experimental
testbed on a time interval long enough (some days). Two
kinds of databases were used in this work: training (Dtr),
used to train the models by learning some parameters from
data, and test (Dte), used to evaluate the proposed models.
Their sizes, in terms of the number of outcomes, are |Dtr|
and |Dte|, respectively.

The goal of this work is finding a simple and effective
way to predict the quality of the wireless channel in terms
of the FDR, i.e., the ratio between the number of ACK
frames that come back to the sender node and the number of
transmitted frames. We relied on the exponentially weighted
moving average (EMA) of outcomes xi, which is the simplest
form of an infinite impulse response (IIR) low-pass filter,
described as

yi = α · xi + (1− α) · yi−1, (1)

where yi is the current FDR prediction, yi−1 is the previous
prediction, xi is the current outcome, and α is a weight
for balancing between present and past. An α value close
to 1 privileges the current outcome (i.e., the model is more
reactive to track sudden changes in channel quality), while
values close to 0 prioritize the previous prediction made by
EMA (making the output more stable and less susceptible
to statistical fluctuations). For the very first prediction we
selected the value y0 = 0.5, but if a better estimation of the
channel FDR is available its value should be used to initialize
y0. In the Z-domain, the low-pass filter in (1) is characterized
by the transfer function

H(α)(z) =
Y (z)

X(z)
=

α

1− (1− α)z−1
. (2)

As highlighted in Fig. 1, in order to assess the performance
of the proposed EMA model a target is computed for every
value of xi in Dte, with 1 ≤ i ≤ |Dte| − Nf , starting from
the following Nf outcomes (xi+1, ..., xi+Nf

)

ti =
1

Nf

i+Nf∑
j=i+1

xj . (3)

This target represents an estimate of the FDR over an interval
in the immediate future whose width is Tf = Nf · Ts. For
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Fig. 1. Example of computation of the EMA model (yi), target (ti), and
mean squared error (e2i ) with i = 5 (the first Ns outcomes are used only for
the execution of EMA model, but not for the computation of the error).

example, if Nf = 3600 then Tf = 30min, and the middle
point of such interval is located 15min after the current
sample. It is not worth shrinking Nf too much because of
statistical fluctuations, which would make the target unreliable.

The most recent value yi given by (1) was taken as the
prediction for the target, under the reasonable assumption that,
despite they are displaced by Tf/2, it constitutes the best
possible estimate. The adoption of predictive models like those
based on linear and polynomial regression has been analyzed
in [23], where their showed poorer prediction accuracy than
EMA.

Evaluation of the prediction accuracy was carried out on
outcomes with index i = Ns+1, Ns+2, ..., |Dte| of Dte. The
first Ns outcomes were discarded because we aim to evaluate
steady-state accuracy, neglecting the initial (and potentially
long) transient from y0 up to when FDR estimation settles.
The closer yi and ti are, the better the prediction ability of
the model. To quantify the model’s accuracy, several kinds of
errors were considered: the real error ei = ti−yi, the absolute
error |ei| = |ti − yi|, and the squared error e2 = (ti − yi)

2.
The latter is the one that is minimized by the learning method
described in Section III.

Starting from these errors, statistical indices can be com-
puted, which include the average (µe, µ|e| and µe2 ), standard
deviation (σe, σ|e| and σe2 ), minimum (emin, |e|min and e2min),
percentiles (ep90, ep95, ep99, |e|p90, |e|p95, |e|p99 and e2p90,
e2p95, e2p99), and maximum (emax, |e|max and e2max). The
number of predictions on which these statistics are computed
is |Dte| − Ns − Nf . As an example, the mean squared error
(MSE) can be obtained as µe2 =

∑|D|−Nf

i=Ns+1 (ti − yi)
2.

The EMA model is parameterized by a single quantity, the
α weight. Optimal values can be found for it, each of which
minimizes some objective functions for some database. We
denote α∗ the value that minimizes the MSE (µe2 ) for Dtr

α∗ = argmin
α

|Dtr|−Nf∑
i=Ns+1

(
ti − yi

)2

. (4)

To assess in a fair way EMA performance, the value α∗

estimated this way is then used on the test database Dte.
It is worth pointing out that optimality of α∗ refers to the

whole Dtr (|Dtr| −Ns −Nf values). However, larger values
for the α weight permit to track FDR variations more quickly,
while smaller values provide better accuracy when channel



conditions are stationary. In addition, α∗ was estimated on
Dtr, but it cannot be assured to be optimal for Dte as well.

A mechanism for finding the different α values that repre-
sent at best the different FDR variation patterns for a given
database D will be presented in Subsection III.

III. LINEAR COMBINATION OF EMA
In this section, the EMA linear combination (ELC) algo-

rithm is presented and analyzed. This algorithm is composed
of two main parts: α and λ selection (λ-s) based on Dtr, and
evaluation based on Dte. Steps are summarized in the example
of Fig. 2, which is meant to clarify ELC operation.

A. λ-s: Initial selection of α weights
In the first step of the algorithm, a number of EMA models

were executed concurrently with different values of the α
weight, taken from a starting sequence αS (i.e., an ordered
sequence of numbers) defined as

αS = (αn | αn = α∗ · rn), (5)

where αn = α∗ · rn is sort of a finite-size geometric
progression with common ratio r in which n can also
assume negative values. In particular, n ∈ [−Nl,−Nl +
1, ...,−1, 0, 1, ..., Nu − 1, Nu], where Nl and Nu are used
to specify the lower and upper bound for the selection of
α weights, respectively. The length of the sequence αS is
|αS| = Nl + 1 + Nu. As an example, when r = 2, Nl = 2,
and Nu = 4, the starting sequence includes 7 values and is
αS = (α

∗

4 , α∗

2 , α∗, 2α∗, 4α∗, 8α∗, 16α∗).
Since the purpose of the λ-s algorithm is to select the set of

α weights that are more suitable for a specific database, the
space of α weights should be sampled in such a way not to
discard any relevant values. Using a geometrical progression
permits to have more α weights near α∗, progressively making
them less frequent when the distance from α∗ increases. This
selection strategy was verified experimentally and compared
to a uniform sampling of the α space. Results, not reported
here for space reasons, confirm that this choice was the most
appropriate.

Decreasing r permits to analyze the space of α weights with
finer granularity, but execution time grows because the number
of EMA models to be checked is higher (given the lower
and upper bounds). Nl and Nu were selected large enough
to embrace values of α that are three orders of magnitude
smaller and larger than α∗, respectively.

Let (y(α1)
i , y

(α2)
i , ..., y

(α|αS|)

i ) be the sequence of predictions
obtained with the EMA models parameterized according to the
values in sequence αS. For the example above, α1 = α∗

4 , α2 =
α∗

2 , α3 = α∗, ..., α|αS| = 16α∗.

B. λ-s: Linear combination
To improve prediction accuracy, a linear combination

(COM) can be evaluated from the output values y(αj)
i produced

by several EMA models, each one characterized by weight αj ,

yCOM
i =

|αA|∑
j=1

λ(αj) · y(αj)
i , (6)

where coefficients λ(αj) are selected so that
|αA|∑
j=1

λ(αj) = 1, (7)

and αA = (α1, α2, ..., α|αA|) represents in a generic way the
sequence of α weights of the considered EMA models. Index
j in (6) selects both the specific EMA model (characterized
by the value of weight αj , which determines the associated
prediction y

(αj)
i ) and the coefficient λ(αj) used to weight its

contribution in the linear combination.
The COM model in (6) coincides with a multipole low-pass

IIR filter characterized by the transfer function

H(αA)(z) =

|αA|∑
j=1

λ(αj) ·H(αi)(z). (8)

As analysed in a very preliminary way in [23], the linear
combination of EMA models may offer better prediction
accuracy than any one of them considered separately. In that
paper, the sequence of α weights was statically selected as
αA = (α

∗

3 , α∗, 3α∗) and the three models were equally
weighted (λ(α1) = λ(α2) = λ(α3) = 1

3 ). In this paper that
solution is tangibly enhanced thanks to the ELC algorithm,
which permits the automatic selection of both the αj weights
and λ(αj) coefficients of the linear combination by means of
a suitable training phase performed on a relevant database.

C. λ-s: Minimizing the MSE

Among the potentially many α values included in the
starting sequence αS, we aim to assess which ones affect
prediction accuracy more. The selection of a small subset of
αS, which includes the most relevant EMA weights, has been
addressed as a minimization problem of the mean squared
error µe2 of the COM model (6), constrained by (7) and with
the boundaries

0 ≤ λ(αj) ≤ 1, (9)

over the training database Dtr.
The method chosen to perform the minimization was the L-

BFGS-B [24], a quasi-Newton optimization algorithm. It is a
gradient-based optimization algorithm that iteratively updates
an estimate of the solution using gradient and curvature infor-
mation, while also handling bound constraints. It is designed
for high-dimensional problems and can efficiently find the
minimum of a function.

The outcome of the MSE minimization problem is a se-
quence λS = (λ(α1), λ(α2), ..., λ(α|αS|)) of optimal coefficients
for the linear combination, each one associated to a specific
value in the sequence αS (by definition, the size of sequences
αS and λS is the same, i.e., |αS| = |λS|).

D. λ-s: Final selection of α weights

We observed that part of the combination coefficients eval-
uated by the minimization algorithm in the previous Subsec-
tion III-C were rather small. Consequently, their contribution
to the final prediction is irrelevant. This is even more true if
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Fig. 2. Example about the application of the ELC algorithm (“min” refers to the minimization of the linear combination, as explained in Subsection III-C).

they are considered on a database different from the one used
to perform minimization, e.g., Dte. In addition, if the αS and
λS sequences are shortened, the algorithm becomes faster and
more suitable to be implemented in embedded devices with
scarce computational power.

Starting from αS, a new final sequence αF is obtained by
selecting part of the values αi in αS for which the corre-
sponding λ(αi) combination coefficients are larger. Practically,
let αS = (α1, α2, ..., α|αS|) be a version of the sequence αS
sorted in decreasing order of the associated value of λ(αi).
Let Nα = |αF| represent the number of EMA models that are
eventually selected for testing. It can be evaluated as

Nα = min

(
i ∈ 1...|αS| |

i∑
j=1

λ(αj) ≥ λmax

)
, (10)

where λmax is a threshold used to discriminate which weights
must be included in αF. Sequence αF can then be derived as

αF =
(
αi ∈ αS | i ≤ Nα

)
. (11)

For instance, setting λmax = 0.9 means to take the minimum
number of elements from αS so that the sum of the related
coefficients in λS exceeds 90%. This is the same as keeping
only the EMA filters that mostly contributed to reducing the
MSE (µe2 ).

The minimization algorithm is then applied a second time
to the sequence αF, to obtain the new λ(αi) coefficients that
minimize the MSE for Dtr. These new λ(αj) values constitute
the actual final sequence λF, which will be used for testing.
Setting λmax = 1.0 implies that the second minimization of
the linear combination is not performed.

E. Evaluation

Given the new final sequence αF = (α1, α2, ..., α|αF|) and
λF = (λ(α1), λ(α2), ..., λ(α|λF|)), the linear combination in (6)
provides the prediction yCOM

i of the COM model. The primary
outcome of this work is to determine if the α weights and the
λ(αj) coefficients of the linear combination, which are optimal
for Dtr by considering µe2 as the error metric, are also optimal
for Dte databases, by considering µe2 and, possibly, other error
functions like µe.

IV. RESULTS

A. Database acquisition

The acquisition of Dtr and Dte was performed with the
same experimental setup used in [23], which consists of
four Wi-Fi adapters of type TP-Link TL-WDN4800 that are
configured to transmit periodically (with a frequency of 2Hz)
frames of dimension 50B directed to four different access
points. The arrival of the ACK frame associated with every
data frame is used to determine its transmission outcome
(success or failure), which is then stored in a database.

Coherently with the rules of the software-defined MAC
(SDMAC) framework [25], [26], the device driver was mod-
ified in order to: disable automatic retransmissions, disable
frame aggregation, disable the backoff procedure, and fix the
transmission speed to 54Mb/s. These changes permitted us
to sample the channel at a fixed rate, preventing the effects of
some mechanisms in Wi-Fi that could distort measurements,
for example by automatically retransmitting frames when the
ACK does not arrive back to the sender node.

Training and test databases were acquired on four different
channels, and their size is considerably larger than prior works
on this topic like [23]. Acquisition spanned over 21.2 days for
Dtr and 12.8 days for Dte on channel 1 (2.412GHz), 21.9
days for Dtr and 10.6 days for Dte on channel 5 (2.432GHz),
24.9 days for Dtr and 15.2 days for Dte on channel 9
(2.452GHz), and 25.5 days for Dtr and 15.2 days for Dte

on channel 13 (2.472GHz).

B. EMA baseline

Plot 3.a reports the evolution of FDR for Dte referred to
channel 13, computed with (3) and Nf = 3600. As can be
seen, the quality of this Wi-Fi channel experienced consistent
variations (from 60% to 80%), and sometimes disturbance
spikes appeared suddenly. Channel 5 is characterized by a
similar pattern, while channel 1 and, especially, channel 9 are
characterized by faster and larger FDR variations (from 40%
to 90%).

As highlighted in Plot 3.b, equation (4) is exploited to find
the optimal values of α weights (that is, parameters α∗) for
the four considered channels, as reported in the third column



TABLE I
COMPARISON BETWEEN EMA AND ELC FOR THE CONSIDERED WI-FI CHANNELS BASED ON STATISTICS ABOUT PREDICTION ERRORS.

Channel Model Model µe2 e2p95
e2max µ|e| σ|e| |e|p90

|e|p95
|e|p99

|e|max emin ep5 ep95 emax

parameters [·10−3] [%] [%]

1
EMA α∗ = 0.001 2.62 13.88 101.51 3.38 3.85 8.64 11.78 16.93 31.86 -24.75 -8.16 9.14 31.86
ELC Nα = 5 2.12 11.09 73.49 3.13 3.38 7.80 10.53 15.04 27.11 -22.97 -7.81 7.78 27.11

5
EMA α∗ = 0.000075 1.07 2.71 74.61 2.17 2.44 4.31 5.20 10.73 27.31 -27.31 -4.56 4.12 7.58
ELC Nα = 3 0.95 2.39 75.49 1.98 2.37 3.84 4.89 11.06 27.48 -27.48 -4.13 3.59 16.14

9
EMA α∗ = 0.000075 8.62 42.60 363.64 5.77 7.27 13.61 20.64 34.91 60.30 -60.30 -20.51 11.21 21.01
ELC Nα = 2 6.95 36.60 376.06 5.08 6.61 11.94 19.13 33.28 61.32 -61.32 -17.91 9.62 33.32

13
EMA α∗ = 0.000625 0.72 3.19 19.75 1.94 1.85 4.31 5.65 8.81 14.05 -12.07 -4.28 4.35 14.05
ELC Nα = 4 0.69 2.88 22.60 1.95 1.77 4.16 5.37 8.53 15.03 -11.76 -4.00 4.35 15.03
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Fig. 3. Example case of channel 13: timing diagram for FDR in Dte

(Plot 3.a), and computation of α∗ from the MSE in Dtr (Plot 3.b).

of Table I for rows labeled “EMA”. Baseline results, obtained
with the plain EMA model using these α∗ values, are also
reported in the table.

As expected, channels 13 and 5 show lower prediction
errors, because they are characterized by smoother FDR
variations. In these cases, the FDR can be predicted with an
average absolute error µ|e| of about 2%, and also high-order
percentiles like |e|p99 are bounded to prediction errors smaller
than ∼ 10%. On the contrary, due to abrupt and difficult-to-
predict FDR variations, the performance of channel 9 is rather
poor, i.e., µ|e| = 5.77% and |e|p99 = 34.91%.

Above considerations also hold for the other indicators
about prediction accuracy, which are related to the real (e)
and absolute (|e|) errors.

C. ELC

The parameters used as the initial selection of α weights
for the evaluation of the ELC model (Subsection III-A) are
Nl = 17, Nu = 17, and r = 1.5. Consequently, the starting
sequence αS included |αS| = 35 α weights.

After the minimization step described in Subsection III-C,
the sorted sequence of λ (i.e., λS) was used, in conjunction
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Fig. 4. MSE (µe2 ) vs. λmax for the considered Wi-Fi channels (the value
λmax = 75% was selected).

with (10) and (11), to select the most significant coefficients
λ(αj) by varying the λmax parameter.

The plots in Fig. 4 report the mean squared error µe2

obtained with different values of λmax for the four training
databases Dtr related to channels 1, 5, 9, and 13. As can be
seen, when λmax > 75% there are practically no improve-
ments regarding µe2 . For this reason, the value λmax = 75%
has been selected for the entire experimental campaign.

Rows labeled “ELC” in Table I show the results obtained
for the four test databases Dte that refer to channels 1, 5,
9, and 13, after all the steps of the ELC algorithm have
been performed as described in Section III. The improvements
this approach provides over plain EMA (a single optimized
exponential moving average) are noticeable in all the four
experimental conditions.

Results in Table I show that, excluding some of the maxi-
mum error values (e.g., e2max and |e|max for channels 5, 9, and
13) and some high-order percentiles (e.g., |e|p99 for channels
5 and 9), the ELC model practically always behaves better
than the EMA model. In particular, the relative reduction of
µe2 , which is the objective function minimized in this work,
is quite consistent, and corresponds to 19.1%, 11.2%, 19.4%,
and 4.2% for channels 1, 5, 9, and 13, respectively.



Regarding µ|e|, with the only exception of channel 13
(where the error remains quite stable), the relative reduction
of the absolute error is 7.4%, 8.8%, and 12.0% for channels 1,
5, and 9, respectively. All these results confirm the higher pre-
diction accuracy of the ELC-based model compared to EMA.
Again, improvements concerning µe2 are better than those
related to µ|µe|, since the λ-s algorithm performs minimization
on the MSE.

Finally, it is worth noting that the number Nα of EMA
models that were selected by the λ-s algorithm slightly de-
pends on the specific channel, but remains quite small when
compared to the cardinality of the initial set of EMA models
(|αS| = 35). This means that ELC is not very demanding from
the point of view of computation resources.

V. CONCLUSIONS

The ability to reliably predict the channel quality is the
most important requirement for implementing wireless net-
work protocols that proactively adapt their behavior to the
characteristics of the communication medium. In this paper,
a new method named ELC was presented and evaluated.
By linearly combining EMA filters configured with different
parameters, it permits to improve the accuracy with which the
future quality of a wireless channel, expressed in terms of
frame delivery ratio, is predicted.

The capabilities of the proposed method were experimen-
tally assessed on a set of databases acquired from a real
Wi-Fi installation, and a substantial reduction of the prediction
error was observed with respect to the EMA model in every
condition we analyzed. Moreover, the low computational com-
plexity of ELC, compared to methods based on artificial neural
network, makes it suitable for adoption in low-cost low-power
devices where communication takes typically place on air, e.g.,
motes in wireless sensor networks (WSN).

Future research directions include the analysis of ELC
in different experimental conditions, the use of ANNs for
selecting frame-by-frame the best EMA model, and the use
of ANNs for non-linear combinations of EMA models.
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