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Abstract—The ability to reliably predict the future quality of
a wireless channel, as seen by the media access control layer,
is a key enabler to improve performance of future industrial
networks that do not rely on wires. Knowing in advance how
much channel behavior may change can speed up procedures
for adaptively selecting the best channel, making the network
more deterministic, reliable, and less energy-hungry, possibly
improving device roaming capabilities at the same time.

To this aim, popular approaches based on moving averages
and regression were compared, using multiple key performance
indicators, on data captured from a real Wi-Fi setup. Moreover,
a simple technique based on a linear combination of outcomes
from different techniques was presented and analyzed, to further
reduce the prediction error, and some considerations about lower
bounds on achievable errors have been reported. We found that
the best model is the exponential moving average, which managed
to predict the frame delivery ratio with a 2.10% average error
and, at the same time, has lower computational complexity and
memory consumption than the other models we analyzed.

I. INTRODUCTION

One of the most popular research goals about industrial
communications in the past decade has been the use of
wireless technologies for connecting machinery and mobile
devices over the air [1]. Industrial networks are demanded
to adhere to recent trends like Industry 4.0 [2], Industry 5.0
[3], and the Industrial Internet of Things (IIoT) [4], where the
convergence of physical, digital, and virtual environments, and
the increased requirements in terms of mobility, sustainability,
resilience, human interaction, automatic configurability [5],
and (distributed) intelligence pose significant challenges.

To comply to the new production paradigms and satisfy
the previously listed goals, industrial networks are becom-
ing increasingly heterogeneous [6], which implies that the
requirements they are expected to meet in terms of relia-
bility, determinism, and timeliness are becoming more and
more strict. Research works aimed at improving the different
wireless communication technologies to meet these constraints
[7], [8], [9], [10], [11] represent concrete contributions toward
their widespread adoption in the industry. In addition, research
on (ultra-)low power solutions and energy-saving mechanisms
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are of utmost importance for those technologies employed in
mobile and battery-powered devices [12].

The quality of the wireless channel, and particularly its
reliability in terms of the frame delivery ratio (FDR), may
change quickly and unpredictably, due for instance to the
interference and disturbance from the surroundings or the
mobility of communication devices and objects within the
considered environment [13]. A fair amount of effort has
been spent in the past years to characterize communication
over wireless channels [14]. Many research studies aim at
evaluating the probability that a symbol (or an entire frame) is
affected by an error starting from the physical characteristics
of the environment (distance between nodes, signal reflections,
electromagnetic noise, bit rate, and so on). These approaches
are mostly useful in the design phase of distributed systems
where nodes are interconnected over the air, as they permit
to estimate what communication quality will be experienced
by them, and hence to properly configure both network and
application parameters.

The ability to measure the quality of communication once a
system has been deployed can be useful to continuously tune
such parameters, in such a way to optimize data transmission
and try to ensure some properties for it. For instance, the
Minstrel algorithm monitors the outcomes of transmission at-
tempts in commercial Wi-Fi drivers and adaptively selects the
best modulation and coding scheme (MCS) to maximize the
chance of success. In the case some messages are characterized
by firm deadlines that must not be exceeded (or, at least, the
likelihood that they are missed must stay below some given
threshold), the ability to foresee the behavior of the wireless
link in the near future could drive some mechanisms that
proactively stop background transmission of non-critical data
when communication quality is expected to worsen. More in
general, if the future quality of the channel could be inferred
from the outcomes of past frame exchanges, applications
were enabled to use this information to proactively counteract
channel quality deterioration by, e.g., switching the communi-
cation channel to a better quality one, decreasing the amount
of best-effort traffic to prioritize real-time traffic, varying
some parameters related to the communication protocol, or
activating some redundant communication path.

Applying machine learning, and in particular artificial neural
networks (ANN), to Wi-Fi [15], was exploited in [16] on
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artificial data, in [17] to predict the received signal strength,
and in [18], [19] to predict the channel gain in specific
applications. In [20], [21] it was instead applied to a database
acquired on real devices deployed in a real environment, hence
showing that the future quality of a wireless channel, expressed
in FDR terms, can be predicted with an error that is deemed
acceptable for many application contexts.

To make results comparable, this work relies on the very
same database employed in [20], [21]. However, we now
analyze a number of known algorithms that require very simple
parameterization if compared to ANNs (in which a huge
amount of data is needed to estimate the model parameters,
i.e., weights and biases). In particular, the models we consider
here are based on moving averages and regression: simple
moving average (SMA), weighted moving average (WMA),
exponential moving average (EMA), simple linear regression
(SLR), and polynomial regression (PR) of degrees two and
three. All these methods, with the exception of EMA, are
completely characterized by the number of samples considered
in the past, which is the only hyperparameter that needs to be
optimized in the training process.

An extensive experimental campaign was performed to
compare these models individually and with respect to the
ANN. Moreover, we also considered heuristics based on linear
combinations of the FDR estimates provided by the above
models, to improve prediction accuracy further. Results show
that the prediction error of EMA is comparable with ANN,
but with a dramatically lower computational complexity and
memory consumption.

The remaining part of the paper has the following structure:
in Section II the problem of predicting the channel quality in
terms of the frame delivery probability is introduced, while in
Section III the models based on regression and moving average
are described and their applicability to the problem analyzed
here is discussed. The experimental setup is presented in
Section IV, experimental results are exposed in Section V,
and finally Section VI concludes this work.

II. CHANNEL QUALITY PREDICTION

This work is specifically based on Wi-Fi, but the proposed
methods can be applied with non-substantial changes also
to other communication technologies. To monitor the quality
of the channel in FDR terms (i.e., the fraction of correctly
delivered frames over the total number of frames transmitted
on air), a cyclic probing was employed by performing con-
firmed one-shot data frame transmissions (i.e., by setting the
retry counter to 0, which disables retransmission) between two
nodes with period Ts = 0.5 s. Backoff was also disabled, by
setting the contention window to 0, which implies that every
transmission attempt may be deferred at worst once by an
ongoing transmission of another wireless device operating in
the same frequency band (interference). As a consequence,
channel quality is sampled at 2Hz and samples are evenly
spaced over time.

The outcome of the transmission of the k-th frame (or,
equivalently, of the k-th channel probing attempt) can be either
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Fig. 1. Management of the moving window Wi (past and future).

success (xk = 1) when the related Acknowledgement (ACK)
frame comes back to the sender, or failure (xk = 0) in the
case the ACK frame is not received within the related timeout.
Failure events can be related to either the loss of the data frame
or the correct reception of the data frame and the subsequent
loss of the ACK. This means that the quality of the channel is
analyzed from the point of view of the sender. This represents
what is typically of interest in real applications: the sender
node, which is responsible for the retransmission of those
frames that went lost (identified by the lack of the ACK),
is also the entity that can exploit predictions about channel
quality to implement suitable countermeasures.

Let the sequence of outcomes D = {x1, ..., xk, ..., xK} be
the database used in this analysis, where K = |D| is its size.
As customary in machine learning, two separate sample sets
were defined: the training database Dtr used to train the model
(if needed), and the test database Dte used to check the quality
of the model. A moving window of width Np+Nf is defined,
where Np is the number of samples used to compute the
prediction and Nf the number of future samples on which
the target (i.e., the quantity to be predicted) is evaluated.
Given a database with K elements, and depending on the
starting position, a number of distinct windows Wi exist,
where i = 1, ...,K − Np − Nf + 1. Each such window can
be expressed as Wi = W p

i ∪W f
i where W p

i = {xj |i ≤ j ≤
i+Np−1} are the Np samples used to perform the prediction
and W f

i = {xj |i + Np ≤ j ≤ i + Np + Nf − 1} are the
Nf future samples exploited for calculating the target ti (see
Fig 1). The duration of these two windows is T p = Np · Ts

and T f = Nf · Ts, respectively.
The target ti is computed as the arithmetic mean of the

samples included in W f
i

ti =
1

Nf

i+Np+Nf−1∑
j=i+Np

xj , (1)

and is a statistical estimation, evaluated on a limited number
of samples, of the frame delivery probability ϵi observed in
the future window.

The fact that the target ti is just an estimate of ϵi, and not
the quantity ϵi we are looking for, makes the kind of problem
analyzed in this work more complex than typical time series
analyses. The goal of this work is to find a prediction function
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Fig. 2. Example of application of SMA for predicting the future quality of
the Wi-Fi channel (Np = 12, Nf = 7).

f(·) that, given W p
i , evaluates a satisfactory estimate yi of the

target ti calculated over W f
i ,

yi = f(W p
i ). (2)

Suitable quantities can be used to evaluate the accuracy of
the prediction obtained from (2). In particular, the absolute
and squared errors were taken into account

ei = |ti − yi|, (3)
e2i = (ti − yi)

2, (4)

where the | · | operator represents the absolute value. Starting
from these errors, the corresponding mean absolute error
(MAE) and mean squared error (MSE) can be obtained by
averaging ei and e2i for all windows in a given test database

MAE =
1

Nte

Nte∑
i=1

ei, (5)

MSE =
1

Nte

Nte∑
i=1

e2i , (6)

where Nte = |Dte| −Np −Nf + 1.
In Fig. 2, the prediction process is exemplified by using

SLR as the prediction function. The Np samples (outcomes)
reported in the left part of the plot are used for estimating the
two parameters of the interpolating line y = β1 · t + β0, i.e.,
slope β1 and intercept β0. It can be formally demonstrated
that applying SLR to Boolean values xi yields unbiased
estimators for both β1 and β0. The proof was not included
for space reasons. After computing the two model parameters,
an estimate for FDR is obtained by evaluating the prediction
function in the most recent sample of the interval W p

i , that is,
x∗
i = xi+Np−1 (xi+11 in the example of Fig. 2). Then, it is

assumed that the FDR in the future window W f
i remains at

the same level as the above estimate, i.e., yi = β1 · x∗
i + β0

(piecewise linear interpolation).

TABLE I
PREDICTION MODELS AND NUMBER OF MODEL PARAMETERS.

Model Equation Param.

SMA ySMA
i = β0 = (xi+Np−1 + ...+ xi)/Np 1

WMA yWMA
i = w1 · xi+Np−1 + ...+ wNp · xi 1

EMA yEMA
i = α · xi+Np−1 + (1− α) · yEMA

i−1 0

SLR ySLR
i = t · β1 + β0 2

PR2 yPR2
i = t2 · β2 + t · β1 + β0 3

PR3 yPR3
i = t3 · β3 + t2 · β2 + t · β1 + β0 4

We found that, for the kind of data analyzed in this work,
computing the estimate using the true regression model (linear,
quadratic, etc.) in the middle point t∗ of W f

i (i.e., T f

2 after its
beginning) actually provided lower accuracy. In particular, the
prediction yi = β1 · t∗+β0 (as well as those related to higher-
order regression) is unsatisfactory when t∗ is located far from
the most recent sample used for estimation. This statement has
been verified experimentally. Results for true, non-piecewise
regression have been reported only for SLR, and are identified
with the name “predictive SLR” (PSLR).

III. PREDICTION MODELS

Besides SMA, which was already checked against an ANN
model in [21], in this work we thoroughly analyze the pre-
diction capability of regression models like SLR and PR, as
well as other models based on moving averages like WMA
and EMA. Then, a lower bound on the achievable error has
been obtained by selecting the best model on a frame-by-
frame basis with an oracle. In other words, we assume that
an oracle is available that tells us which prediction model
achieves the highest accuracy at any given time. Finally, the
models have been used together by calculating the estimate as
a linear combination of their predictions.

Polynomial regression models were successfully exploited
in other application contexts like clock synchronization pro-
tocols [22], [23], as well as the prediction of rainfall [24]
and movements [25]. Although the results obtained in those
cases were very promising, there is no evidence that the same
performance could be obtained also in this application domain.

In the following we distinguished between hyperparameters,
which are optimal values determined in the training phase (Np

for SMA, WMA, and regression, α for EMA), and parameters
specific of every model, which are dynamically evaluated in
the test phase using different techniques (moving averages, in-
terpolation, etc.). Table I summarizes the prediction models we
analyzed, along with the number of their specific parameters.
SMA, WMA, and EMA, rely on a single model parameter,
whereas two are required for SLR (slope β1 and intercept β0

of the regression line). For second-order polynomial regression
(PR2) the number of parameters is three (i.e., β2, β1, and β0),
and four for third-order polynomial regression (PR3).

Parameter β0 for SMA (which can be seen as both a
moving average and a zero-degree regression) is obtained by
averaging the most recent Np samples. For WMA, the average



is weighted using wj coefficients with j = 1, ..., Np (see
Table I), where the coefficient associated with the most recent
sample xi+Np−1 is w1 =

Np

Np·(Np+1)/2 , the one assigned to an

intermediate sample is wj =
Np−j+1

Np·(Np+1)/2 , and that assigned
to the oldest sample xi is wNp

= 1
Np·(Np+1)/2 . For instance, if

Np = 3 the three weights are w1 = 3
6 , w2 = 2

6 , and w3 = 1
6 .

Regarding EMA, the new prediction yEMA
i is obtained as

a linear combination of the most recent sample xi+Np−1 and
the old prediction yEMA

i−1 , where α is used to weight the two
contributions (see the related formula in Table I). Basically, it
corresponds to the simplest form of infinite impulse response
(IIR) low-pass filter, which is applied here to the outcomes
of the channel probing process. A value of α near to 1 gives
higher priority to the new sample, while a value of α near to 0
privileges the old prediction. This is the same as considering a
WMA model where all samples are weighted in exponentially
decreasing way: yEMA

i = α ·xi+Np−1+α(1−α) ·xi+Np−2+
α(1− α)2 · xi+Np−3 + α(1− α)3 · xi+Np−4 + · · · .

Finally, the parameters for SLR, PR2, and PR3 are obtained
by finding the interpolating polynomial of degree 1, 2, and 3,
respectively, that minimizes the squared error of the samples
contained in W p

i . In theory, increasing the regression order
(from SLR to PR2 to PR3) may provide models that, in
some circumstances, better fit the non-linearity of the channel
they have to predict. In practice, having more parameters in-
creases the likelihood of overfitting. Moreover, model accuracy
worsens because a larger number of parameters have to be
estimated with the same number Np of samples.

All models make use of Np samples for estimation, with the
exception of EMA that only relies on the last sample. From
a computational point of view, EMA requires very simple
operations, which makes it the best candidate for devices with
limited resources in terms of memory, computational power,
and energy.

A. Estimation of Hyperparameters (Np and α)

The number of samples Np used to perform the estimation
is an important aspect of the model and heavily affects the
achievable performance. The optimal value for it, identified
with the symbol N∗

p , was evaluated over the training database
Dtr by varying the size of the past window and by selecting
the one that provides the lowest mean squared error

N∗
p = argmin

Np

1

Ntr

Ntr∑
i=1

(
ti − f

(
W p

i (Np)
))2

(7)

where Ntr = |Dtr| − Np − Nf + 1, Nmin
p ≤ Np ≤ Nmax

p ,
while the notation W p

i (Np) stresses the fact that function f(·)
is evaluated over a moving window that includes Np samples
in the past.

The optimal value N∗
p , which is estimated on the training

database Dtr using (7), was then used with the test database
Dte to obtain the relevant statistics. Despite N∗

p is expected
to achieve the best accuracy in the test too, if the quantity to
be predicted does not vary excessively over time a larger Np

value could be selected in order to decrease the sampling error.

Otherwise, in quickly varying spectrum conditions, smaller Np

values permit to more accurately track the evolution of FDR.
For methods like EMA, which do not depend on Np,

equation (7) cannot be directly applied. Nevertheless, a very
similar procedure was used to find the optimal value for the
α coefficient (denoted α∗) in the training set Dtr, which was
subsequently used in the test phase to assess prediction results.

B. Oracle

Let ymi be the prediction for the FDR in the future
window W f

i obtained by model m ∈ M, where M =
{SMA,WMA,EMA,SLR,PR2,PR3} is the set of basic
models we considered in this paper. The term oracle predictor
(OR) denotes an additional model that, on a sample-by-sample
basis, selects the specific prediction function (among those
listed above) that provides the lowest squared error

yOR
i = y

argminm∈M

(
ti−y

(m)
i

)2

i . (8)

Unfortunately, there is no algorithm able to single out the
best model in advance, as always performing the right choice
would require ti to be known. As a consequence, the error
achieved by OR represents sort of a lower bound for the class
of mechanisms where prediction relies on the selection among
a finite number of available options.

C. Linear combination

The last model proposed in this work, we term COM,
performs the prediction by combining the outputs of two or
more of the above models. In particular, the accuracy of a
simple linear combination was analyzed and compared with
all the other models in M considered individually. The COM
model is described by the equation

yCOM
i =

∑
m∈M

λ(m) · y(m)
i , (9)

and is parameterized by the tuple {λ(m),m ∈ M}, where∑
m∈M λ(m) = 1, which defines the specific weights applied

to every basic model m to derive the overall prediction yCOM
i .

IV. EXPERIMENTAL SETUP

The database we used for evaluating the accuracy of pre-
diction models was acquired on a real setup, deployed in
our lab, which includes four TP-Link TL-WDN4800 Wi-Fi
adapters installed in two Linux PCs and four access points.
PCs and APs were located 3÷4m meters apart, so that signal
attenuation was negligible. Slightly more than 15 active APs
were visible from our testbed, which caused mild interference,
especially on working days. According to [20], the FDR for
the test database Dte lain in the range 60÷83%, while for the
training database Dtr it usually stayed between 55 and 90%,
with a single negative peak where the FDR approached 35%.

Adapters were configured to transmit with a fixed speed of
54Mb/s. Automatic retransmission, backoff procedure, and
frame aggregation were disabled, so that channel conditions
could be periodically probed every Ts = 0.5 s with packets
whose size is 50B. The quite large value we selected for Ts
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Fig. 3. Prediction accuracy (MSE) during training vs. model hyperparameters (Np, α) and estimation of their optimal values (N∗
p , α∗).

provides an adequate certainty that every transmission attempt
is completely ended (i.e., either the ACK frame is received or
an ACK timeout event is raised by the adapter) before the next
one is issued. At the same time, it caused negligible pertur-
bations to the environment. Such an arrangement is possible
thanks to the ath9k driver, which permits the source code of
the driver to be modified so as to customize some operating
parameters and behaviors of the media access control (MAC)
layer.

For collecting and storing the xk samples, the software-
defined MAC (SDMAC) framework [26], [27] was used,
which is a set of rules and the related application programming
interface (API) that permit the outcome of frame transmis-
sions to be notified (along with ancillary information) to an
application running in user space from a purposely modified
driver. A specific program was developed aimed at cyclically
sending data frames and collecting the transmission outcomes
in a database. In addition to xk, the information recorded in
the database for every frame includes the sending time, the
reception time of the related ACK, and the received signal
strength (RSS) of the received ACK frame, but currently
only xk transmission outcomes are exploited for prediction.
It is worth remarking again that the events we collect do not
correspond to frame arrivals to destination, but concern the
ACK frames automatically returned by the recipient every time
a frame is correctly received. Therefore, it may happen that a
frame arrives to the recipient correctly but the related ACK is
lost, this implying that the recorded outcome is xk = 0. This
behavior is completely coherent with real-world distributed
applications, where channel quality measurement is done
by the transmitter node, which exploits this information to
optimize communication parameters for, e.g., lowering power
consumption, increasing reliability, or decreasing latency.

Databases are recorded concurrently for channels 1
(2.412GHz), 5 (2432GHz), 9 (2.452GHz), and 13
(2.472GHz). All the databases used in this paper refer
to channel 13. In particular, the training database Dtr consists
of 2, 807, 524 samples (more than 16 days), while the test
database includes 460, 927 samples (more than 2.5 days).

V. RESULTS

The procedure described in Subsection III-A was applied to
the training database Dtr to obtain the optimal configuration
for all hyperparameters. For the computation of ti, Nf = 3600

samples were included in the future window W f
i , which

correspond to a duration T f = 30min. Hence, the estimate
of the channel FDR can be thought of as referred to the time
T f

2 = 15min relative to the beginning of W f
i .

The MSE obtained for the SMA and WMA models versus
the value Np is reported in Plot 3.a. Dashed vertical lines
highlight the minimum of these curves, and represent the value
N∗

p for any specific model. Plot 3.b (in the middle) has the
same meaning as Plot 3.a, the only difference being that it
refers to the SLR, PR2, and PR3 models. They were reported
separately because of the very different ranges for Np. Finally,
in the rightmost Plot 3.c related to EMA, the hyperparameter
exploited for minimizing the MSE is α. The optimal value is
denoted α∗. The optimal hyperparameter for every model is
reported in the second column of Table II.

A. Comparison
The optimal values of N∗

p , which minimize the MSE for
every model (α∗ for EMA), have been used for the comparison
in the test phase. We found that N∗

p is equal to 50400 for
PR2 and 72000 for PR3, which correspond to 7 h and 10 h,
respectively. Likely, using for the estimation a number of past
samples that span over a period longer than 4 h does not suit
most application contexts. As a consequence, for the PR2 and
PR3 models we decided to report results obtained by setting
Np = 28800, which corresponds to 4 h. The hyperparameters
actually used for the experimental evaluation are reported in
the third column of Table II.

In the same table, comparative results among the presented
models have been reported. Concerning the squared error we
only show MSE = µe2 , while for the absolute error several
statistical indexes have been reported because they are more
meaningful from an intuitive point of view. In particular, in
addition to MAE = µe, the reported statistics include the
standard deviation (σe), percentiles (ep90

, ep95
, ep99

, ep99.9
),

and maximum (emax). For instance, 99% of the times ei lies
below the 99-percentile ep99 , while only 1% of the predictions
suffer from errors above that value.



TABLE II
COMPARISON AMONG PREDICTION MODELS (SMA, WMA, EMA, SLR, PR2, PR3, PSLR, COM) BASED ON STATISTICS ABOUT ERRORS.

Model Optimal Param. Used Param. MSE MAE σe ep90 ep95 ep99 ep99.9 emax w

[·10−3] [%] [%]
SMA N∗

p = 4080 (34m) Np = 4080 0.987 2.34 2.10 5.04 6.40 9.77 14.49 15.38 12.57
WMA N∗

p = 7680 (∼ 1 h) Np = 7680 0.879 2.24 1.94 4.75 5.87 8.75 13.92 14.91 7.54
EMA α∗ = 0.000375 α = 0.000375 0.803 2.16 1.83 4.52 5.58 8.52 13.53 14.86 12.54
SLR N∗

p = 28800 (4 h) Np = 28800 0.982 2.43 1.98 5.11 6.31 8.26 13.43 13.89 27.58
PR2 N∗

p = 50400 (7 h) Np = 28800 1.362 2.68 2.54 5.85 7.35 11.48 18.44 19.48 19.59
PR3 N∗

p = 72000 (10 h) Np = 28800 1.437 2.81 2.55 6.25 7.74 11.98 18.35 19.50 20.18
PSLR N∗

p = 28800 (4 h) Np = 28800 1.058 2.51 2.07 5.30 6.57 8.57 13.84 14.35 -
COM - Np = 28800 0.920 2.28 2.01 4.92 5.98 9.35 14.28 15.46 -

ANN [21]* - Np = 14400 0.699 2.04 - 4.16 5.22 7.78 12.12 - -
*Results related to ANN are those reported in [21]. They were obtained with a slightly higher number of samples, due to the different Np values used in that work.
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Fig. 4. CDF of the prediction error for the analyzed models.

Finally, the last column w of the table represents the
percentage by which any given method wins over the others.
As an example, w = 12.57% for SMA means that the 12.57%
of the times the SMA model suffered from an absolute error
ei (or, equivalently, e2i ) that is lower than all the other models.

By observing the obtained results it can be seen that
the EMA model provided tangibly better accuracy than the
others, especially for what concerns MAE, σe, and low-order
percentiles. Showing the superiority of EMA is one of the most
important outcomes of this work, since it is the model with
the lower requirements in terms of computational power and
memory, and consequently energy consumption. This makes
it suitable to perform channel quality prediction also in small
embedded devices with limited resources.

The two models based on moving average, WMA and
SMA, provided sensibly worse performance when compared
to EMA. As expected, WMA experienced lower errors than
SMA due to its ability to track channel variations by focusing
more on recent samples.

Models based on regression such as SLR, PR2, and PR3

showed higher errors, which worsen with the regression order.
As previously pointed out, the direct use of regression models
to infer the behavior of the channel in a future instant in time,
as for PSLR, was always pejorative. As an example, the MAE
of PSLR (2.51%) is greater than SLR (2.43%).

The COM model with λ(m) = 1
6 (all the six considered

models are equally weighted) did not provide any advantages
in terms of the prediction accuracy. Finally, the last row of the
table reports the experimental results obtained by using the
ANN described in [21]. Even if the MAE provided by ANN
is lower than non-ML-based approaches (i.e., 2.04%), this
approach is much more complex than EMA (whose MAE is
2.16%). Therefore, ANNs are recommended only for specific
application contexts where the device executing the model has
enough power in terms of computation resources.

The cumulative distribution function (CDF) reported in
Fig 4 shows the empirical probability that any given method
provides an error less than or equal to a given threshold
(reported in abscissa). Starting from the CDF, percentiles can
be easily derived as the value on the x-axis that corresponds to
a given percentage on the y-axis (for instance, 95% for ep95

).
As expected, this set of curves confirms that EMA outperforms
the other models practically always.

The best technique, when the number of times a model wins
over the others is considered, is SLR, which wins 27.58%
of the times. Unfortunately, when it does not win a non-
negligible prediction error is often experienced, which makes
the average result in terms of MAE worse than the other
models. Curiously, EMA is the best model by looking at the
statistical indicators, but at the same time it is the one that
more seldom wins, i.e., w = 7.54%. This probably depends
on the fact that, even when losing, EMA manages to provide
satisfactory estimates.

B. Oracle

Starting from the results about the winning percentage, the
performance of the oracle (OR) model described in Subsec-
tion III-B was analyzed, with the aim to provide a meaningful



TABLE III
LOWER BOUNDS ON ERRORS, OBTAINED WHEN AN ORACLE IS USED TO SELECT THE BEST AMONG THE OTHER MODELS (OR MODEL).

Model MSE MAE σe ep90 ep95 ep99 ep99.9 emax

[·10−3] [%]
OR (ALL) 0.397 1.27 1.54 3.31 4.16 7.06 12.40 13.89

OR (EMA+WMA) 0.762 2.05 1.85 4.48 5.52 8.40 13.53 14.86
OR (EMA+SMA) 0.740 1.98 1.86 4.40 5.44 8.52 13.53 14.86
OR (EMA+SLR) 0.589 1.77 1.67 3.89 4.76 7.39 13.28 13.89
OR (EMA+PR2) 0.710 1.89 1.88 4.33 5.45 8.49 13.53 14.86
OR (EMA+PR3) 0.647 1.83 1.77 4.14 5.29 8.24 12.45 14.30

OR (EMA+SLR+PR3) 0.452 1.47 1.54 3.44 4.29 7.15 12.40 13.89

TABLE IV
STATISTICS ON THE PREDICTION ERROR ACHIEVED BY THE EMA MODEL FOR DIFFERENT VALUES OF α.

Model α MSE MAE σe ep90 ep95 ep99 ep99.9 emax w

[·10−3] [%] [%]
EMA 0.000125 0.810 2.24 1.75 4.73 5.43 6.92 11.80 12.18 39.22
EMA 0.000375 0.803 2.16 1.83 4.52 5.58 8.52 13.53 14.86 22.89
EMA 0.001125 0.907 2.28 1.97 4.72 5.89 9.71 14.18 16.16 37.89

COM (EMA) - 0.733 2.10 1.71 4.22 5.29 8.07 12.82 14.38 -
OR (EMA) - 0.400 1.38 1.44 3.21 4.28 6.29 11.51 12.18 -

lower bound on statistical indicators. OR selects on a sample-
by-sample basis the model that experiences the lowest error.
Results about the oracle are reported in Table III. In the
first row, identified by “OR (ALL)”, the oracle performs its
selection among all the six models analyzed in this work by
using (8). Behavior is quite interesting, because OR achieves
an absolute reduction of the MAE by 0.89% (from 2.16% to
1.27%) if compared to the best EMA model. As can be seen
from the values in the table, all other statistical indexes were
also consistently improved when resorting to the oracle.

These results open an interesting research direction about
the use of machine learning, or artificial intelligence in general,
to predict channel quality. In particular, an ANN can be
exploited for adaptively selecting the best prediction model
in order to try approaching the accuracy of the OR model,
instead of using it to directly foresee an estimate for the FDR
in the future. In this respect, the OR model can be seen as
a lower bound, which can be hardly achieved in practice but
that might be approached by an algorithm that takes care of
the automatic selection of the best model. This investigation
is out of the scope of this work, but we deem it promising. As
such, it will be the subject of our future research activities.

In the following rows of Table II, the OR model was applied
to select between the (best) EMA model and one of the other
five models. Quite interesting, it can be noted that selecting
between EMA and SLR achieves a MAE equal to 1.77%.
This means that exploiting just two models, which are not
unreasonably complex to implement, potentially enables a
0.39% reduction of the MAE (from 2.16% to 1.77%).

Running OR with three models, i.e., EMA, SLR, and PR3,

yields higher benefits, with a 0.69% reduction of MAE (from
2.16% to 1.47%). We found that using more than three models
is not convenient, because the error does not shrink tangibly
but, at the same time, complexity of the machine learning
system grows, as the number of options that need to be
classified increases.

C. Considerations about EMA
In this subsection, the model which provided the best

results, i.e., EMA, is analyzed for different values of α. In
addition to the optimal value α∗ = 0.000375, which minimizes
the MSE over the whole database Dtr, the results obtained
with α = α∗/3 = 0.000125 and α = 3 · α∗ = 0.001125 are
also reported in Table IV.

As expected, both are worse than the case when α = α∗.
However, analyzing the number of times when an EMA model
with a specific value of α wins (column w), it can be seen
that the model with α = 0.000125 has a 39.22% chance of
winning, while the model with α = 0.001125 wins 37.89%
of the times. This means that, sometimes, it is better to
have a more reactive model (higher values of α) to quickly
track variations of the channel quality, whereas when channel
conditions are stable selecting a lower value for α makes the
EMA model more accurate.

Again, an oracle (“OR (EMA)” model) can be used to find
a reasonable lower bound on the prediction error, by selecting
the value of α on a frame-by-frame basis. The results we
obtained are quite promising, with the MSE that lowers from
2.16% (EMA model with α = α∗) down to 1.38% for the OR
model. In the OR case, also all the other statistical indices
about accuracy are significantly better. This suggests that a



machine learning algorithm can be used not only to select
the best model among a set of options, but as a classifier to
dynamically select the best parameterization, i.e., the optimal
α in the case of EMA or the optimal Np for the other models.
Again, this is left for future work.

Last but not least, the linear combination of the three
EMA models with equal weights (λ(m) = 1

3 ), denoted “COM
(EMA)”, achieved a MAE equal to 2.10%, which closely
resembles what we obtained with the ANN model.

VI. CONCLUSIONS

In this work, the ability to predict the future quality of
a wireless (Wi-Fi) channel in terms of the frame delivery
ratio, starting from the outcomes of past transmission attempts,
was investigated using a number of simple models based on
moving averages and regression.

The exponential moving average, typically known as EMA,
showed the lowest prediction error when compared to the other
models. EMA enables lightweight (inexpensive) implementa-
tions in terms of computational and memory requirements,
which makes it a perfect choice for devices with limited re-
sources, like motes in wireless sensor (and actuator) networks
or, more in general, embedded devices.

Performing a linear combination among the estimates pro-
duced by multiple EMA models permits to lower the predic-
tion error further. By doing so, a mean absolute error as low as
2.10% was obtained in our experiments, which is comparable
to what can be achieved using much more complex models
like those based on artificial neural networks.

This research work paves the way to the definition of
advanced techniques aimed at improving prediction accuracy
further, which either rely on suitable linear combinations
of outcomes generated by other models or that make use
of machine learning algorithms to dynamically select the
best prediction model depending on the observed channel
conditions. In our future work transmission latency will be
additionally considered.
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