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Approximating Optimal Estimation of Time Offset
Synchronization with Temperature Variations
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Abstract—The paper addresses the problem of time offset
synchronization in the presence of temperature variations, which
lead to a non-Gaussian environment. In this context, regular
Kalman filtering reveals to be suboptimal. A functional opti-
mization approach is developed in order to approximate optimal
estimation of the clock offset between master and slave. A
numerical approximation is provided to this aim, based on
regular neural network training. Other heuristics are provided
as well, based on spline regression. An extensive performance
evaluation highlights the benefits of the proposed techniques,
which can be easily generalized to several clock synchronization
protocols and operating environments.

Index Terms—Synchronization, Clocks, Control systems, Neu-
ral networks, Real time systems

I. INTRODUCTION

CLock Synchronization Protocols (CSPs) are becoming a
fundamental component of industrial networks as they

are widely used in all the contexts in which a common time
reference is required [1], [2]. The notion of time usually
follows a clock register, which is cyclically updated with
a frequency derived from a Crystal Oscillator (XO). Clock
registers may differ in virtue of changes in XOs oscillation
frequencies due to time-varying environmental conditions in-
volving temperature, power supply, vibrations, humidity or
pressure [3]. The purpose of a CSP is exchanging synchro-
nization messages to keep the clock registers of different
nodes aligned, by using timestamps on such messages. The
synchronization error thus depends also on the rate at which
the synchronization messages are exchanged and on their
noisy content (timestamps jitter) due to unreliability of both
communication and messages processing.

A. Motivation

Synchronization algorithms are used to reduce the syn-
chronization error by exploiting the information contained
in the timestamps. At this purpose, several CSPs are based
on Kalman filtering, in particular with respect to the IEEE
1588 protocol [4]–[7], which is the “de facto” standard in
this context. Similar Kalman-based approaches have been
also investigated for other CSPs, such as the Network Time
Protocol (NTP) [8]. The fundamental hypotheses of Kalman
estimation are: linear dynamics of the system, Gaussian noise
components for both state and measurements variables and
a-priori knowledge of the noise covariances.
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B. Contribution

XOs are usually modeled by linear equations [4], [5],
but non-Gaussian noises lead to sub-optimal performance as
stated in [4]. In this perspective, this paper formulates an
optimal estimation approach beyond regular LQG hypotheses
[6] (i.e., linear dynamics, quadratic cost function, Gaussian
noises). The key idea is deriving the functional optimization
formulation of optimal estimation and computing the inherent
solution via neural approximation [9]. The main focus relies
on the frequency variation component of the clock, whose
noise is affected by temperature changes and other effects
outside the control of the system designer, which are far from
being Gaussian. Despite the approach presented in this paper
does not guarantee optimal estimation, it outperforms Kalman
filtering and infers the right synchronization correction over
a large set of experimental conditions, without any ad-hoc
adjustment of the algorithm’ parameters. The approach can
be generalized to other non-LQG conditions, as the one of
[10], in which non-linear clock models are claimed to be
more accurate for Wireless Sensor Networks (WSNs). It must
be noted, however, that the WSNs context deserves special
attention also with respect to the energy efficiency of the
algorithm, which this paper does not address explicitly.

The following section deals with the used CSP model,
which is updated by an additional component concerning
the XO exposed to temperature variations. In Section III,
the concept of optimal filter is formulated. Kalman filtering
is addressed by Section IV. The proposed approaches are:
high-order regression splines and neural approximation of the
optimal filter. They are addressed by Sections V and VI,
respectively. The experimental setting is discussed in Section
VII. Simulation results are provided in Section VIII. Section
IX concludes the paper and summarizes possible topics of
future research.

II. CLOCK MODEL AND CORRECTION

The clock model considered here slightly differs from the
one of [5]. At a generic time k, the clock registers of the
master and the slave nodes (denoted by CM (k) and CS(k),
respectively) differ of the offset quantity θ(k).

CS(k) = CM (k) + θ(k) (1)

A typical two states clock model can be represented by the
following equations in the discrete domain:

θ(k) = θ(k − 1) + γ(k − 1) · τ + ωθ(k − 1) (2)
γ(k) = γ(k − 1) + ωγ(k − 1) + ωγT (k − 1, ·) (3)
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where τ is the size of the time step and γ(k) represents
the skew variations, as commonly represented in the scientific
literature. The skew defines the normalized difference between
the XO oscillation frequency and its nominal frequency. The
ωθ and ωγ quantities represent the noises affecting θ and γ,
respectively, whose distributions are of the Gaussian type; the
inherent standard deviations are denoted by σωθ and σωγ ,
respectively. The ωγT quantity represents the noise effect due
to temperature variations as detailed later.

CSPs without the compensation of the propagation delay,
such as the sender-receiver FTSP [11] or the receiver-receiver
RBS [12] and RBIS [13], estimate the offset θ(k) and the
skew γ(k) using two timestamps. Without any synchronization
assistance, the simplest way to update the two quantities at the
slave is:

θ̂(k) = T̂S(k)− T̂M (k) (4)

γ̂(k) =
θ̂(k)− θ̂(k − 1)

T̂M (k)− T̂M (k − 1)
(5)

having the timestamps T̂M (k) and T̂S(k) acquired on a
common time event k at master and slave. The timestamps
are affected by jitters ωM and ωS , whose standard deviations
are denoted by σM and σS , respectively:

T̂M (k) = CM (k) + ωM (k) (6)
T̂S(k) = CS(k) + ωS(k) (7)

The analysis made in [14] highlights the separate effects
of both the frequency skew and the jitter. CSPs with the
compensation of the propagation delay (such as the IEEE 1588
[15] and RTSP [10]) make use of 4 timestamps to estimate the
propagation delay. In such a case, equations (4) and (5) are
slightly different, see, e.g., [5]. The algorithms formulated in
this work take (4) and (5) as a reference and are applicable
to other CSPs (i.e., sender-receiver, receiver-receiver, with and
without the estimation of the propagation delay), by updating
(4) and (5) in agreement with the specific characteristics of
the CSP 1.

The distribution of jitters is supposed here Gaussian to focus
on non-Gaussian temperature variations, but the hypothesis
may be questionable, especially with software timestamping.

A. Temperature Variations

The model of the temperature variations takes as a reference
a scenario in which an object changes different environments,
characterized by different temperatures. A typical example
deals with a Programmable Logic Controller (PLC) in a mobile
carriage that moves inside and outside a warehouse. Other
examples are embedded systems placed near a heat source,
such as a car engine, or exposed to a transition between a
state of sunshine and a state of shadow exposition. In these
and other typical situations, the temperature variations can be
fast, thus causing wide variations of the XO frequency.
Let two consecutive temperature changes have a round trip

1The three state equation model of [4] can be incorporated in the following
formulations as well, without significant changes to the derivation of the
proposed algorithms.

period p. When the object is placed in an environment with
a different temperature, the temperature T of the XO varies
with the following law2:

T = TE + (TXO − TE) · e− 1
tc∆t (8)

where TXO is the initial temperature, tc is the thermal time
constant (i.e., the time needed to reach the 63.2 % of TE ,
in relation with the initial temperature TXO) and TE is the
temperature of the environment in which the XO is moved on.
The left plot of Fig. 1 represents the temperature variation of a
XO contained in a shell with tc = 60 s; it is periodically moved
every p = 600 s between two environments with temperatures
THighE = 40 ◦C and TLowE = −10 ◦C, respectively. Different
types of XOs with different characteristics are available.
Almost the totality of off-the-shelf PCs and embedded systems
make use of AT-cut XOs to beat time, since they are very
cheap. Unfortunately, such a kind of XOs highly suffer of
oscillation frequency variations with respect to temperature.
Temperature compensated XOs exist (VCXO, OCXO, TCXO,
TVVCXO, OCVCXO), but usually they are not installed in
common systems. For this reason, temperature variation is one
of the most important causes of frequency instability on today
devices [3]. The temperature-frequency relation for AT-cut
XOs [16] can be accurately expressed with a 3rd polynomial
form:

∆f

f
= a · (T − T0) + b · (T − T0)2 + c · (T − T0)3 (9)

where T0 is the reference temperature of the XO and a, b and c
three coefficients that represent the XO characteristic. The val-
ues used in this work are T0 = 25 ◦C, a = 0.0, b = 0.4 · 10−9

and c = 109.5·10−12, as reported in [16], and the temperature-
frequency characteristic is reported in the middle plot of Fig.
1. From the time-temperature plot (left in Fig. 1) and the
temperature-frequency function (9), the noise component due
to temperature ωγT (t, ·) = ωγT (t, tc, p, THighE , TLowE ) can be
eventually derived and quantized. The inherent probability
distribution is not Gaussian; it is actually a multi-modal
distribution, with significant asymmetry among the peaks.

III. OPTIMAL FILTER

Let x(k) = f(x(k − 1), ξ(k − 1)) be the state equation
in compact form from (2) and (3) with x(k) = [θ(k), γ(k)],
ξ(k) = [ωθ(k), ωγ(k) + ωγT (k, ·)] and y(k) = g(x(k),η(k))
be the measurement equation from (4) and (5) with y(k) =
[θ̂(k), γ̂(k)], η being the vector of measurement noises in (6)-
(7) on θ and γ, respectively. Both f(·) and g(·) are linear
functions and can be expressed in terms of basic matrix algebra
3. The optimal estimator (or optimal filter) is defined by the
law νok(·) = νok(Ik) minimizing the following functional cost:

νok(Ik) = arg min
νk(Ik)

E
x(k)
{h(x(k)− νk(Ik))|Ik},∀ Ik (10)

2The temperature variation of an object moved to an environment with
a different temperature can be modelled by the so-called Newton’s law of
cooling. If the object has a negligible internal thermal resistance, the law is a
precise approximation of its temperature evolution over time. The hypothesis
of negligible thermal resistance may be reasonable for a XO.

3x(k) = Ax(k−1)+ξ(k−1),A = [1, τ ; 0, 1]; y(k) =Hx(k)+η(k),
H being the identity matrix.
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Fig. 1. Time-temperature variation, temperature-frequency characteristic, and time-frequency variation plots with p = 600 s and tc = 60 s.

Ik being the information vector collecting all the measure-
ments from the beginning Ik = [y(0), ...,y(k)] and h(·) being
a Bayesian risk function 4. The optimal filter thus implies the
solution of a functional optimization problem. Formally, a new
instance of problem (10) is stated at each k, thus leading to
increasing sizes of the information vector. In practice, such a
size is limited by looking at a fixed observation horizon of
the past, namely: Ik = [y(k −K), ...,y(k)]. The size of the
information vector, K, should be accurately set in order to find
a good trade-off between limiting memory usage (which may
imply some computational burden for the involved estimation
algorithm) and acquiring sufficient knowledge for a reliable
decision making.

A. Virtual clock
The explicit presence of control variables is disregarded

when stating the optimal filter (10). The rationale of this choice
relies on the fact that the master dynamics is independent of
the decision taken at the slaves and slave regulation simply
consists of correcting the offset component according to the
estimation of θ and the frequency skew component by using
the estimation of γ [5]. In this perspective, the concept of
virtual clock consists of the following: no correction (control
variable) is applied to the slave clock register, but a mapping
function (i.e., the virtual clock) drives the slave to infer the
master notion of time, denoted in the following by CvM . In
other words, a desired actuation may be scheduled at the slave
with respect to the last update of CvM , and a timestamp on
an external event may be acquired by a slave and converted
in the master timescale using the most recent estimation of
CvM . The virtual clock is updated each time new timestamps
can be paired by a slave node. The impact of introducing the
control variable in the functional cost, and derive the Riccati
equations accordingly, may lead to a smoothing effect on the
slave dynamics [6]. Such an effect is not investigated in this
work.

IV. KALMAN

The Kalman filter consists of deriving νo(·) in closed-
form under the mentioned LQG hypotheses. The key issue

4h(z) is a Bayesian risk function if the following are met: h(z) is not
negative, it is symmetric, i.e., h(z) = h(−z) and it is not decreasing with
increasing positive z; in the scalar case, examples are: h(z) = z2 and h(z) =
|z|.

is to observe that the probability Pr(x(k)|Ik) consists of
a multidimensional Gaussian function with mean µk and
covariance Σk, µk being the estimation of x(k) and Σk being
the variance of the estimator. Both µk and Σk are computed
by regular Kalman equations, whose variables depend on the
matrices of f(·) and g(·) and on covariances of ξ and η.
In this paper, the Kalman equations of [5] are used without
reporting them in detail for the sake of synthesis. Very similar
equations are used in [6] as well.

A. Remarks

The Kalman filter guarantees the optimal solution of prob-
lem (10) (under the LQG hypotheses): at each k, the best
estimation of x(k) is µk and the components of Σk decrease
to zero with k →∞; in other words, the uncertainty on x(k),
expressed by the difference between x(k) and µk under the
h(·) function, tends to zero with k →∞. This holds in station-
ary conditions, namely, with fixed f(·), g(·), and stationary
noises ξ and η. In non-stationary conditions, e.g., if some
variance of ξ or η changes, the Kalman filter automatically
adapts its calculations and achieves a new optimal solution
after a transient period. At each discrete time instant, the
Kalman estimation of θ (denoted by θ̂) leads to the virtual
clock correction, as defined in III-A, directly through the
application of θ̂ in (1).
In passing, it is interesting to note that the Kalman optimality
holds for every form of the function h(·) in (10), since the
symmetries of both h(·) and Pr(x(k)|Ik) (when the latter is
Gaussian) let the integration deriving from the E(·) operator in
(10) achieve its global minimum exactly when µ→ x. Outside
LQG hypotheses, on the other hand, the Pr(x(k)|Ik) proba-
bility is not Gaussian anymore and its analytical computation,
together with its application to the minimization of the above
integral, become quite impractical, thus leading to the need of
investigating numerical approximation mechanisms.

B. Perfect knowledge of state noises

The optimality of the Kalman filter is guaranteed with a
perfect knowledge of ξ and η covariances. This may be ques-
tionable for the ξ component due to the difficulty of acquiring
a perfect knowledge of the XO characteristic curve. While
the covariances of the timestamps can be estimated through
experiments on the available device, a measurement process
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of the state noises is a hard task because it involves the direct
sampling of the XO physical properties. This is of particular
importance with respect to the temperature variations. As the
probability distribution of the noise component ωγT (k, ·) is
changing in dependence of the environment, one would want to
derive an ‘autonomic’ estimation algorithm, capable to adapt
to the current conditions (thermal time constant, temperature-
frequency XO function (9), temperature levels) without manual
intervention on the algorithm’ parameters in dependence of
the environment. This is exactly the final goal of the neural
approach.

C. Kalman extensions

The well-known generalized versions of Kalman filtering,
such as the ‘Extended’ and ‘Unscendent’ homonymous filters
try to follow non-linear dynamics under the Gaussian hypoth-
esis [17]. For this reason, they are disregarded here. Other
extensions of the Kalman filters, which have been disregarded
for the involved computational burden, but which may be of
interest for further performance comparison, are: the on line
estimation of the covariances in parallel to the Kalman filter
(e.g., [18]) and the Kalman Smoother [19], which may help
reduce the estimation error through its post-processing of the
Kalman filter data.

V. REGRESSION SPLINES

Before addressing directly the numerical approximation of
(10), simpler heuristics can be formulated. They consist of
defining the two-dimensional vector %k = [T̂S(k), T̂M (k)] and
a new information vector:

Isk = [%k−K , ...,%k]. (11)

The i-th order spline (denoted by Si) is derived by inter-
polating, with the i-th order, the set of points in Isk by
means of the Ordinary Least Squares method [20]. Points %κ,
κ = k − K, ..., k, lie around the 1 − th order spline (S1)
representing the line of ideal correspondence between master
and slave clocks. On the other hand, the distances of %κ from
S1 denotes the quantity of the asynchronism between master
and slave. The underlying idea of the splines is therefore to
interpolate the trend of those points and to infer the position of
the successive points [T̂S(κ), T̂M (κ)], κ > k as being gener-
ated by the spline itself. Being [T̂S(κ), T̂M (κ)] representative
of [CS(κ), CM (κ)] according to (6) and (7), the i-th order
spline becomes a possible virtual clock function (vSik (·)), as
defined in III-A, by simply stating: CvM (t) = vSik (CS(t)),
t > k. The process of spline interpolation is repeated every
k: Isk moves ahead of one time unit in order to update the
calculation of the spline according to the last measurements
(T̂S(k+1), T̂M (k+1)) and by disregarding old measurements
before k+1−K. The continuous updating helps follow a non-
stationary behavior of the noises.

In the absence of measurement noise, T̂M (k) = CM (k),
T̂S(k) = CS(k) and a perfect estimation is obtained from
(4) and (5). In the presence of measurement noise, increasing
the number of samples K mitigates the effect of oscillations
around the spline due to timestamps jitters (ωM and ωS in

(6) and (7)), but, at the same time, the effect of frequency
variations due to state noises makes the approximation less
accurate. This happens in particular with large K and small
orders i. The parameter K is thus a compromise between
robustness to timestamps jitters and frequency variations.

With sudden frequency variations, spline orders higher than
1 may perform better because the elements of Isk are not linear
dependent. The first three order splines are therefore used
(linear, quadratic and cubic functions); quadratic and cubic
splines try to capture the non-linear behavior of the underlying
trend in Isk. On the other hand, higher order splines have been
disregarded to avoid overfitting, to which the splines are more
sensitive with more noise and large K.

Splines are intrinsically heuristics because they approximate
the optimal filter implicitly, without addressing directly the
solution of (10).

First order regression splines have been successfully used
in [11]–[13]; at the best of the authors’ knowledge, this is the
first time regression splines with order larger than 1 are used
in this context.

An approach similar to linear regression has been applied
by [8] to the NTP protocol. Splines surprisingly reveal to be
more efficient than expected when the Gaussian hypothesis is
not met [8].

VI. NEURAL APPROXIMATION

A direct way to approximate the optimal filter is now
addressed. The proposed method slightly differs from the ones
of [21]–[24]. The following non-linear programming problem
is defined:

wo = argmin
w

E
x(k)
{‖x(k)− ν̂k(Ik,w)‖2|Ik} (12)

ν̂k(Ik,w) being a neural network with input Ik, with output
an estimation of x and with vector weights w; its input-
output mapping depends also on the number and form of the
internal basis function of each layer (e.g., sigmoidal or radial
functions). A first approximation is derived by assuming the
optimal filter νo(I) being obtainable by searching in the space
of the functions defined by the chosen structure of ν̂(·,w).
Another approximation step comes from the observation that
the E(·) operator above and its gradient cannot be obtained
in closed-forms. As a result, regular non-linear programming
procedures cannot be directly applied to (12). A countermea-
sure to this consists of resorting to a standard neural network
training as follows. The new information vector is defined:

INNk = [dk−K , ..., dk] (13)

dk being the distance between each %k in Isk as defined in (11)
and the first order spline (S1) interpolating the set of points in
Isk. Then, a training set is stated with h = 1, ...,H samples of
INNk as in (13) (being used as input of the neural network in
place of Ik), and of ek = CM (k)−vS1

k (k), to be used as target
of the neural network. Differently from (12), a scalar output
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is stated for the approximated filter. The problem consists of
finding the weights assignment wo so that:

H∑
h=1

[hek − ν̂k(hINNk ,wo)]2 ≤ ρ. (14)

Problem (14) consists of tuning the output of the neural
network (NN) in order to approximate the collected values
of ek as a function of the information vector INNk . The front
end of the neural network thus becomes the synchronization
errors introduced by the first order spline. Typical values for
the bound ρ are in the range [0.001, 0.5]. After training,
the neural network applies the virtual clock as: CvM (t) =
vS1

k (CS(t))+ν̂k(INNk ,wo), where k is the most recent sample
near time t. The underlying idea of the method is to follow
the concept of approximating the trends in Isk, as done by
the splines, but with a more powerful inference capability
than the splines. To this aim, the optimization problem (14)
captures the mapping between the actual measurements and
the synchronization error. During training, the NN should
be capable to explore this mapping through the functional
dependence on INNk , which should be more precise than
simple interpolation of Isk.

Remark 1: For the sake of simplicity, the target of the
neural estimation focuses on the offset component (θ), without
explicitly addressing the skew component (γ). As evidenced
by the following experiments, a significant performance im-
provement is achieved, despite this simplification. The results
also show how the estimation of γ may be more crucial
to limit the synchronization error between two consecutive
synchronization instants with large τ .

Remark 2: The rationale of the adoption of INN (instead of
the one of the optimal filter I) relies on the need of deriving
neural inputs that do not depend on the absolute value of time.
The values collected in I formally depend on the initial instant
of time from which the dynamical system is considered; in
other words, they depend on the absolute values of the steps
{0 ·τ, 1 ·τ, 2 ·τ, ...}. The values of INN , on the other hand, are
relative to the slave time shift through the measured distances
from the 1-th order spline.

Remark 3: Both in [21], [22], [24] and in the present paper,
a neural approach is applied to approximate optimal control or
state estimation (optimal control in [21], [24], state estimation
in [22] and in this paper). The main difference between those
works and the idea presented here relies on the numerical
approach used to derive the approximation. In [21], [22], [24],
the functional cost provides indication in the direction of the
optimal solution without the explicit knowledge of it. The
minimization process is therefore driven by sampling the cost
and its gradient and performing a descent step (also known
as stochastic gradient [25]). Here, the offline sampling of the
optimal solution (i.e., the exact master time) is available. This
allows building a training database in which the information
vector is mapped onto the difference between master and slave
times. A similar approach has been used in [23].

Remark 4: The sequence of approximation steps from (10)
to (14) leads to the conclusion that evaluating the error
computed in approximating the unknown optimal estimation

law, νo(·), with the actual one, ν̂o(·), or, in other words, the
convergence of the performance of ν̂o(·) to the one of νo(·),
is a hard task, even though some theoretical results assure
the sub-optimal properties of these kinds of approximation
schemes. The interested reader is referred to section V of [24]
for an overview or to [9] for details on this subject.
Despite all the envisaged approximations, the obtained results
guarantee a good level of suboptimality and give rise to several
insights into the structure of the problem.

Remark 5: Another difficult task arises from finding
good generalization capabilities of ν̂(·) with respect to
non-stationarity conditions, as previously mentioned for the
Kalman filter. In this respect, the training is developed with
respect to samples coming from non-stationary probability
distributions. This consequently leads to the adaptation of
ν̂(·) to variable system conditions. An example of this is
available in [21], in which a similar neural law approximates
suboptimal controls in the presence of time-varying conditions.
As outlined in subsection IV-B, Kalman does not guarantee
this property.

VII. EXPERIMENTS SETTING

A. State parameters

The stability of a XO highly influences the performance of
a CSP. The Allan variance [26] is the typical parameter used to
characterize XOs stability. It depends on the sampling period τ
and can be calculated as σ2

y(τ) = 1
2τ2 〈xn−2 − 2xn+1 + xn〉,

where n identifies a specific sample xn of a temporally ordered
sequence of timestamps spaced by an interval τ . The variances
(σ2
θ and σ2

γ) of the Gaussian noise components (ωθ and ωγ)
of the clock model of equations (2) and (3) have been set
in agreement to the typical values of Allan variance of AT-cut
XOs. The first clock model considered models a XO that is not
subjected to temperature changes. Other three clock models
have been introduced in order to take into account temperature
variations.

• Gaussian (‘G’): σ2
θ = 10−17 s2 and σ2

γ = 10−19 . The
thermal skew component is not preset (ωγT (·) = 0). The
G condition models the instabilities of a XO in a tem-
perature controlled environment. This model takes into
account all the typical XOs frequency instabilities (power
supply, vibrations, humidity and pressure variations), with
the exception of temperature effects. Since ωγT (·) = 0,
equations (2) and (3) are equal to those reported in [5].
The values of σ2

θ and σ2
γ are typical of an AT-cut XO of

medium stability and they have been calibrated in order
to obtain a slightly bigger Allan variance than the one
reported in [27], [28].

• Temperature (‘T’): the frequency skew due to temperature
(ωγT (·) 6= 0) is the only effect on quartz stability (σ2

θ = 0
and σ2

γ = 0 ). Although unrealistic, this model is useful
to capture the impact of temperature variations without
any other source of state noise.

• Gaussian+Temperature (‘G+T’): it is a realistic condi-
tion, in which random noise components of equations
(2) and (3) (σ2

θ = 10−17 s2 and σ2
γ = 10−19 ) are taken

into account together with the thermal skew component
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TABLE I
SIMULATION PARAMETERS AND ALLAN VARIANCES FOR THE ANALYZED

CLOCK MODELS

Scenario σ2
θ [s2] σ2

γ σ2
γT

(·) σ2
y(0.1 s) σ2

y(1.0 s)

G 10−17 10−19 = 0 9.97 · 10−17 1.00 · 10−17

T 0 0 6= 0 6.24 · 10−18 6.37 · 10−16

G+T 10−17 10−19 6= 0 1.06 · 10−16 6.47 · 10−16

(ωγT (·) 6= 0). The ‘G+T’ condition models a XO that is
affected by the typical instabilities of a quartz, and it is
cyclically exposed to temperature excursions.

B. Other parameters

1) Step size: The value of the step size τ represents the
sending period of synchronization messages (i.e., common
events used by the CSP to evaluate T̂M (k) and/or T̂S(k)), as
well as the time step of the clock model of equations (2) and
(3). In practice, synchronization messages are sent periodically
every 0.1 − 1 s and timestamps are frequently acquired in
software since devices supporting hardware timestamping are
commonly used only for time critical applications, such as the
automation of high-voltage substations [29]. The use of soft-
ware timestamp also in this context is becoming an important
research challenge [30]. Simulation results are provided for
τ = 0.1 s and τ = 1 s. Such values are consistent with CSP
typical values: 1 or 2 s for Sync messages in IEEE 1588 and
for the majority of CSPs and 100 ms for RBIS. The values
of Allan variances for the two analyzed τ and for the three
experimental conditions are reported in Table I.

2) Measurement noises: The measurement jitters (ωM and
ωS in (6) and (7)) are both fixed to a standard deviation
of 1µs, in coherence with the typical accuracy of software
timestamps obtained in the interrupt handler of the device
driver of today’s real PCs [31]. Experiments performed by
the authors on real wireless adapters confirm these results. The
maximum uncertainty introduced by the timestamp mechanism
could be even in the order of 10µs when timestamps are
acquired at the communication socket level and, in case of
high computational load, it can raise up to 224µs [32].

3) Neural network: The neural network used in the exper-
iments (denoted in the pictures with the ‘NN’ acronym) has
K inputs, 10 hyperbolic tangent hidden units and one linear
output. The input samples INNk and the target ek were normal-
ized by dividing them with the maximum of the absolute value
computed over all the input samples and targets of a single
train database. The normalization constant computed for each
train database is used for the normalization of test samples. It
is trained using the standard back-propagation algorithm in 8
epochs with a learning rate linearly decreased during the train
from 0.001 to 0.00001 and with a momentum of 0.01.

4) Kalman: Differently from the neural network, which
is asked to provide estimations over a large set of envi-
ronments without ad-hoc re-training, the Kalman filter is
constantly updated with the right covariances of the state
and measurement noises. This is needed each time a new
configuration of the temperature noise parameters takes place.

When using Kalman, the first 5000 samples of each experiment
are discarded. This ensures the performance evaluation after
the convergence of the filter’ parameters. The two approaches
are therefore compared unfairly. This helps highlight the
robustness of the neural network as any other Kalman filter,
which performs on line estimation of the covariances, may
hardly guarantee better performance than the one shown here.

5) Performance target: All train and test databases consist
of 50000 samples. The 99.9 percentile of the synchronization
errors is the performance metric. It is denoted by p99.9 and
represents the 99.9 percentile of the difference between the
real master time CM (k) and the master time estimated at the
slave by using the virtual clock CvM (k), in correspondence
with the arrival of the synchronization messages. The rationale
of this choice relies on the need of capturing the capability
of the algorithms to limit master-slave asynchronism below
a given threshold, in the 99.9% of the cases. The qualitative
behavior arising from the following results holds for other
metrics as well, such as the variance of the synchronization
error. The percentile is represented as a function of the size
of the information vector K. The ranges of K considered in
all of the following figures capture the best performance of
each algorithm. The experiment related to the ‘G+T’ scenario
was repeated twice. For the second repetition, denoted as
‘G+T+τ ’, the 99.9 percentile is evaluated after τ seconds
the synchronization time instants. The τ delay represents the
maximum time between two synchronization messages (under
the hypothesis of an ideal communication network without
loss of messages) and the point with higher likelihood of
the maximum error. In this respect, ‘G+T+τ ’ is the worst
case scenario. The estimation of the offset at time k + τ is
obtained assuming a linear behavior of the XO after the last
synchronization instant, i.e., by using the last estimations of
θ̂(k) and γ̂(k) to compute θ̂(k + τ) = θ̂(k) + γ̂(k) · τ . For
the Kalman filter θ̂(k) and γ̂(k) are the outputs of the filter,
for the splines θ̂(k + τ) = vSik (k + τ) and for the neural
approximation γ̂(k) = m − 1, where m is the slope of the
1− th order spline5.

VIII. PERFORMANCE EVALUATION

The results shown here are obtained with the following
initial conditions: θ(0) ∈ [−5, 5 ]s and γ(0) = 0; similar
results are obtained with γ(0) = 10 and 100 ppm. The
left column of Fig. 2 represents the performance under the
first Gaussian (‘G’) scenario. Configuration parameters of the
ωγT (·) function are tc = 60 s, p = 600 s, TLowE = −10 ◦C

and THighE = 40 ◦C. As expected, Kalman achieves the best
performance independently to the setting of K and τ . Such
a performance is also reached for τ = 0.1 s by NN and S1

for K > 600 and by S2 and S3 for larger K (1500 and 2000
with S2 and S3, respectively). Similar comments are applicable
to the τ = 1.0 s case, a part from S1, which guarantees the
lowest percentile only at K = 260. As mentioned in Section

5Although the proposed techniques are focused on the estimation of θ, we
need for the ‘G+T+τ ’ scenario the γ estimation which is derived from S1

when using the NN. The further extension of the NN for γ estimation is an
ongoing topic of research.
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Fig. 2. 99.9-percentile of the synchronization error, for K, S1, S2, S3 and NN control algorithms, for the G, G+T and G+T+τ clock models, and with
τ = 0.1 s and τ = 1.0 s

V, splines achieve good performance when K is large enough
to obtain a reliable result from the regression applied to the
available noisy points and small enough to avoid capturing
wrong trends from the data. The S1 with τ = 1.0 s is topical
in this perspective because it reveals an increasing sensitivity
to noise with K > 260. The same concept holds true for
the middle column of Fig. 2 (‘G+T’ scenario), in which all
the splines experience a very short range of the optimal K.
In that case, the NN is much more robust to the setting of
K and guarantees the best performance because the noise
is not Gaussian anymore. The performance gap of Kalman
is significant as well. It is also remarkable that the splines’
performance is not distant from the best one, in particular with
τ = 0.1 s. This is an attractive property because splines require
much less implementation and computational effort than the
neural approach. The synchronization accuracy significantly
degrades for all the methods when results are obtained after
the synchronization instants, and its worsening is directly
proportional with the size of the gap (‘G+T+τ ’ scenario). It
is more evident with τ = 1.0 s, because the estimation of γ̂
becomes older. For NN, less robustness to K is evidenced for
τ = 1.0 s (not for τ = 0.1 s). This is due to less accuracy of
the γ̂ estimation, based on S1, which degrades with increasing
K. This suggests the extension of the NN including γ̂, which
can be easily incorporated since the scalar output of the NN
should be replaced by a vector addressing both θ̂ and γ̂.
The performance of the ‘T’ model, mentioned in the previous
subsection, is not depicted in Fig. 2 because it is very similar to
the one of the ‘G+T’ case. Overall, the neural approach reveals
to be essential to match possible non-Gaussian behaviors of the
noises. The splines could be also helpful in this perspective,
but they need an accurate tuning of the size of the information
vector.

The NN estimation algorithm has been also implemented on

TABLE II
THE CONFIGURATION PARAMETERS OF THE FUNCTION ωγT (k, ·) FOR THE

DATABASES USED IN THE SIMULATION.

Environment TLowE [◦C] THighE [◦C] tc [s] p [s]

A -10 40 20 200
Train B -10 40 60 600

C -10 40 180 1800
Test D -5 35 100 1200

E -30 60 10 100
F -30 60 10 100

Train G -30 60 60 600
H -30 60 180 1800

Test I -10 40 20 200
L -35 65 20 200
σ2
θ = 10−17 (s2) and σ2

γ = 10−19 (s2)

an Atmel ATmega328P microcontroller running at 16 MHz.
The aim was to evaluate the inherent computational effort
on a microcontroller with the typical complexity of those
used in WSN nodes. The results previously obtained with
τ = 1 s and K = 15 have been taken as a reference because
they are compatible with the execution of the algorithm in
the WSNs context (i.e., with high τ and small K). When
setting these parameters on the microcontroller, the registered
mean execution time of each iteration involving both features
extraction (from S1) and the computation of the output of the
trained NN was 4.932 ms, which is much smaller than the
used τ . The algorithm scales linearly with respect to K.

A. Generalization capabilities of the NN

In this set of experiments, the proposed estimation methods
are now tested in the ‘G+T’ scenario under variable conditions
involving temperature thresholds (THighE , TLowE ), thermal time
constant (tc) and object’ movements (p). Table II summarizes
all the tested conditions. The temperature thresholds were
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chosen to represent environments with medium (TLowE =
−10 ◦C and THighE = 40 ◦C) and high temperature excursions
(TLowE = −30 ◦C and THighE = 60 ◦C). The time constant,
that represents the thermal inertia of the XO, was chosen
between two extremes: tc = 10 s represents a XO poorly
insulated, or placed in a fan cooled case, while tc = 180 s
is referred to a well thermal insulation. The p value is about
ten time tc to allow the XO to reach the new temperature after
a temperature change. In such a way, results include all of the
temperature excursions between THighE and TLowE .

In the first plot of Fig. 3 (plot a), the NN has been
trained with the environmental conditions A, B and C. They
represent a range of conditions that should cover all the typical
temperature variations to which a XO may be exposed. The
test condition D represents a situation in which the parameters
of the ωγT (·) noise assume values within the range of the
parameters used in the training phase. Despite the parameters
of condition D are inside the training range, the inherent
values denote significantly different environmental conditions
involving THighE , TLowE , p and tc. Plot a helps highlight the
generalization capability of the NN model. It achieves the
lowest p99.9, together with the splines, but over a larger
range of K. It is however worth remembering that only the
NN method needs a training phase, the splines and Kalman
are applied directly during the test phase. When the test
parameters are outside the training range, the NN does not
generalize well (plot b). All the algorithms are however very
sensitive to the K parameter in plot b. Kalman has a higher
p99.9 over all the presented settings (plots a, b and c), even if
it is always updated with a perfect knowledge of the noises’

statistics, which are numerically evaluated in advance.

A way to correct the poor NN results of plot b is to enlarge
the training set even more, by including THighE and TLowE of
test set E and by keeping variable p and tc. This corresponds
to train conditions F, G and H. Two test sets are used: I and
L (see again Table II). Test set I is equivalent to D (i.e.,
temperature range included in the training set), but with a
larger temperature range than D. Test set L is equivalent to E
(i.e., temperature range not included in the training set), but
with smaller oscillations outside training. The results of test I
are satisfactory because they lead to a situation qualitatively
very similar to plot a; the inherent plot is not reported for the
sake of synthesis. As a results of this, it appears relevant how
the NN is capable to achieve the best performance over a large
range of the K coefficient, together with good generalization
capabilities if it operates in environments whose THighE and
TLowE have been used during training. The results of test L
are shown in plot c of Fig. 3. The values of THighE and
TLowE , which slightly lie outside training, cause performance
oscillations of the NN with respect to K. Those oscillations
do not however lead to a performance decrease as appears in
plot b. As far as the splines are concerned with respect to tests
I and L, their minimum reveals again to be very sensitive to
K (the I case is not reported but it is very similar to the L
case of plot c).

In this perspective, Fig. 4 highlights the dependence be-
tween p99.9 and the K coefficient over conditions A, B and
C. Similar results are experienced with F, G and H. In the NN
case, presented in plot d, there is a wide range of K values for
which the algorithm achieves the minimum of p99.9 in all the
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considered scenarios (A, B and C). The same does not hold
true for the splines as evidenced by plots e, f and g. Choosing
a unique K for all conditions A, B and C is almost impossible
with the splines. For this reason, the NN reveals to be the
most suitable algorithm for the synchronization problem in the
presence of temperature variations. The inherent generalization
capabilities guarantee good performance over a large set of
environments, this avoiding any on-line adjustment of the
algorithm.

IX. CONCLUSIONS AND FUTURE WORK

The paper has presented an innovative estimation approach
to clock offset synchronization. It is of interest when the Gaus-
sian hypothesis for clock state equations is not applicable, e.g.,
in the presence of temperature variations. The approach reveals
to be more precise than regular Kalman filtering and more
robust to parameters setting with respect to other regression
schemes. It reveals to be also applicable to other situations in
which other traditional hypotheses, involving linear dynamics
or quadratic cost functions, are not met.
As the optimal filter is analytically unknown, future work deals
with the adoption of other approximating schemes, together
with the adoption of other elements of non-linearity, e.g., in
other wireless contexts, e.g., [13] and by also including some
energy metric.
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